The numerical model of convection in magma sills is developed. The model is based on a full system of equations of fluid dynamics and includes heat transfer, buoyancy effects and diffusion of some minor component (marker). Solidification is treated as a phase transition. The results indicate that there are some qualitative differences between very thin sills with Rayleigh number Ra = 105 and thin sills with Ra = 106. For a basaltic magma the first case corresponds to the thickness of the sills of approximately 30 cm and the second case corresponds to the thickness of 60 cm. In the first case mixing is inefficient and conduction is the dominant form of heat transfer. In the second case mixing is efficient and convection is the dominant form of heat transfer. Some of the results can be scaled for the more viscous magmas in thicker sills. 相似文献
In this study,we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994,a relatively wet year,and 2002,a relatively dry year.A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted;we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere.Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction(NCEP-I and-II).A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface(E P) from the divergence of the total moisture transport.Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions.In 1994,Pakistan received more rainfall compared to 2002 during the summer monsoon.Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August.Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal.Moreover,in 1994,a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002.Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon.Finally,from the water budget analysis,it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon. 相似文献
Abstract The analysis compares the observed field of run‐off (assumed correct) with adjusted precipitation over North America (as amended by den Hartog and LeDrew over Canada) and derives the principal hydroclimatological ratios for each five‐degree latitude‐longitude square. The amended precipitation field yields values of the Budyko dry ness index close to values suggested by the vegetation distribution. The Priestley‐Taylor parameter, α, lies between unity (equilibrium) and potential (1.26) values over much of humid North America, but exceeds these values in the northwest Pacific squares, where advective heating may be the cause. Other regions of strong seasonal advective heating (e.g. the Great Plains) do not appear to influence the distribution strongly. A weighted convective forcing temperature is derived, varying from 298 K in the extreme south to below 285 K in the north. This function (and the Bowen ratio) achieve improbable values in northern Labrador‐ Ungava. The precipitation, run‐off and net radiation régimes appear still to be out of balance in these squares. An adjustment of either precipitation or net radiation by about a tenth corrects the imbalance, but the method is not capable of deciding which field (or both) is in error. Over the rest of the continent the adjusted precipitation field now appears to be in balance with observed run‐off and temperature distributions. 相似文献
The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS. 相似文献
The processes of partial melting and magmatic diapirism within the lower crust are evaluated using a numerical underplating model. Fully molten basalt ( T = 1200°C) is emplaced at the Moho beneath a solid granite ( T = 750°C) in order that a melt front grows into the granite. If diapirism does not occur, this melt front in the granite reaches a minimal depth in the crust before (like in the molten basalt) crystallization takes place. the density contrast between the partially molten granite layer and the overlying solid granite can lead to a Rayleigh-Taylor instability (RTI) which results in diapiric rise of the partially molten granite. Assuming a binary eutectic system for both the granite and the underplating basalt and a temperature- and stress-dependent rheology for the granite, we numerically solve the governing equations and find (a) that diapirism occurs only within a certain but possibly realistic range of parameters, and (b) that if diapirs occur, they do not rise to levels shallower than 15 or perhaps 12km. the growth rate depends on the degree of melting and the thickness of the partially molten layer, as well as the viscosity of the solid and the partially molten granite. From a comparison of the growth rate with the velocity of a Stefan front it is possible to predict whether a melt front will become unstable and result in diapiric ascent or whether a partially molten layer is created, which remains at depth. We carry out such a comparison using our thermodynamically and thermomechanically consistent model of melting and diapirism. 相似文献