首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   49篇
  国内免费   75篇
测绘学   11篇
大气科学   99篇
地球物理   72篇
地质学   53篇
海洋学   70篇
天文学   390篇
综合类   7篇
自然地理   2篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   5篇
  2019年   10篇
  2018年   5篇
  2017年   11篇
  2016年   13篇
  2015年   20篇
  2014年   17篇
  2013年   21篇
  2012年   14篇
  2011年   20篇
  2010年   20篇
  2009年   46篇
  2008年   41篇
  2007年   43篇
  2006年   54篇
  2005年   43篇
  2004年   45篇
  2003年   48篇
  2002年   34篇
  2001年   37篇
  2000年   37篇
  1999年   29篇
  1998年   37篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有704条查询结果,搜索用时 203 毫秒
71.
72.
73.
There is still no consensus as to what causes galactic discs to become warped. Successful models should account for the frequent occurrence of warps in quite isolated galaxies, their amplitude as well as the observed azimuthal and vertical distributions of the H  i layer. Intergalactic accretion flows and intergalactic magnetic fields may bend the outer parts of spiral galaxies. In this paper we consider the viability of these non-gravitational torques to take the gas off the plane. We show that magnetically generated warps are clearly flawed because they would wrap up into a spiral in less than two or three galactic rotations. The inclusion of any magnetic diffusivity to dilute the wrapping effect causes the amplitude of the warp to damp. We also consider the observational consequences of the accretion of an intergalactic plane-parallel flow at infinity. We have computed the amplitude and warp asymmetry in the accretion model, for a disc embedded in a flattened dark matter halo, including self-consistently the contribution of the modes with azimuthal wavenumbers   m = 0  and   m = 1  . Since the m = 0 component, giving a U-shaped profile, is not negligible compared to the m = 1 component, this model predicts quite asymmetric warps, maximum gas displacements on the two sides in the ratio 3 : 2 for the preferred Galactic parameters, and the presence of a fraction ∼3.5 per cent of U-shaped warps, at least. The azimuthal dependence of the moment transfer by the ram pressure would produce a strong asymmetry in the thickness of the H  i layer and asymmetric density distributions in z , in conflict with observational data for the warp in our Galaxy and in external galaxies. The amount of accretion that is required to explain the Galactic warp would give gas scaleheights in the far outer disc that are too small. We conclude that accretion of a flow with no net angular momentum cannot be the main and only cause of warps.  相似文献   
74.
75.
In the last decade, near-infrared imaging has highlighted the decoupling of gaseous and old stellar discs: the morphologies of optical (Population I) tracers compared to the old stellar disc morphology, can be radically different. Galaxies which appear multi-armed and even flocculent in the optical may show significant grand-design spirals in the near-infrared. Furthermore, the optically determined Hubble classification scheme does not provide a sound way of classifying dust-penetrated stellar discs: spiral arm pitch angles (when measured in the near-infrared) do not correlate with Hubble type. The dust-penetrated classification scheme of Block & Puerari provides an alternative classification based on near-infrared morphology, which is thus more closely linked to the dominant stellar mass component. Here we present near-infrared K -band images of 14 galaxies, on which we have performed a Fourier analysis of the spiral structure in order to determine their near-infrared pitch angles and dust-penetrated arm classes. We have also used the rotation curve data of Mathewson et al. to calculate the rates of shear in the stellar discs of these galaxies. We find a correlation between near-infrared pitch angle and rate of shear: galaxies with wide open arms (the γ class) are found to have rising rotation curves, while those with falling rotation curves belong to the tightly wound α bin. The major determinant of near-infrared spiral arm pitch angle is the distribution of matter within the galaxy concerned. The correlation reported in this study provides the physical basis underpinning spiral arm classes in the dust-penetrated regime and underscores earlier spectroscopic findings by Burstein and Rubin that Hubble type and mass distributions are unrelated.  相似文献   
76.
77.
78.
Spiral galaxies with a reported bend in the slope of the oxygen abundance O/HR 23, derived with the traditionally used R23-method, are examined. It is shown that the artificial origin of the reported bends can be naturally explained. Two causes of the false bend in the slope of O/HR 23 are indicated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
79.
The linear theory and N-body simulations are used to present a new, alternative model of the galaxy A0035-324 (the “Cartwheel”), which is the most striking example of the relatively small class of ring galaxies. The model is based on the gravitational Jeans-type instability of both axisymmetric (radial) and nonaxisymmetric (spiral) small-amplitude gravity perturbations (e.g., those produced by spontaneous disturbances) of a dynamically cold subsystem (identified as the gaseous component) of an isolated disk galaxy. The simplified model of a galaxy is used in which stars (and a dark matter, if it exists at all) do not participate in the disk collective oscillations and just form a background charge. In the theory presented here, a case for both purely radial solutions and purely spiral solutions to the equations of motion of an infinitesimally thin gaseous disk is made, which is associated with both a radial density wave and a dominant spiral density wave which propagate outwards creating a rough ring and a number of spiral arms. Through three-dimensional numerical simulation of a collisionless set of many particles, I associate these gravitationally unstable axisymmetric waves and nonaxisymmetric waves with growing clumps of matter which take on the appearance of a ring and spokes of mass blobs.  相似文献   
80.
We use data on open star clusters (OSCs) from the Homogeneous Catalog of OSC Parameters to determine some of the parameters of the spiral structure of our Galaxy: the pitch angle of the spiral arms \(i = 21\mathop .\limits^ \circ 5\), the pattern speed Ωp = 20.4 ± 2.5 km s?1 kpc?1, and the initial phase of the spiral θ0 = 206°. The spiral pattern of the Galaxy proves to have been virtually unchanged over the last billion years, and signatures of the concentration of objects toward the spiral arms can be traced back to this age. However, the number of spiral arms in the structure cannot be determined from OSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号