全文获取类型
收费全文 | 3755篇 |
免费 | 795篇 |
国内免费 | 2125篇 |
专业分类
测绘学 | 57篇 |
大气科学 | 1701篇 |
地球物理 | 570篇 |
地质学 | 2349篇 |
海洋学 | 1302篇 |
天文学 | 28篇 |
综合类 | 209篇 |
自然地理 | 459篇 |
出版年
2024年 | 47篇 |
2023年 | 123篇 |
2022年 | 156篇 |
2021年 | 179篇 |
2020年 | 206篇 |
2019年 | 238篇 |
2018年 | 204篇 |
2017年 | 233篇 |
2016年 | 208篇 |
2015年 | 241篇 |
2014年 | 304篇 |
2013年 | 312篇 |
2012年 | 276篇 |
2011年 | 304篇 |
2010年 | 226篇 |
2009年 | 303篇 |
2008年 | 281篇 |
2007年 | 315篇 |
2006年 | 312篇 |
2005年 | 225篇 |
2004年 | 245篇 |
2003年 | 206篇 |
2002年 | 211篇 |
2001年 | 169篇 |
2000年 | 169篇 |
1999年 | 178篇 |
1998年 | 137篇 |
1997年 | 133篇 |
1996年 | 97篇 |
1995年 | 88篇 |
1994年 | 66篇 |
1993年 | 68篇 |
1992年 | 46篇 |
1991年 | 40篇 |
1990年 | 19篇 |
1989年 | 32篇 |
1988年 | 21篇 |
1987年 | 11篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 7篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 17篇 |
1954年 | 2篇 |
排序方式: 共有6675条查询结果,搜索用时 0 毫秒
51.
52.
南海海平面高度年循环的特征 总被引:10,自引:0,他引:10
根据 TOPEX/ POSEIDON-ERS高度计提供的海平面高度异常资料和并行海洋气候模式(POCM)模拟海平面高度资料,分析了南海海平面高度年循环特征。结果表明:l月,3月和5月海平面高度的异常值分别与7月,9月,11月的异常值相反。l月(7月),深水海区与吕宋海峡的海平面高度为负(正)异常,在大部分陆架区和南海的西和南部,海平面高度为正(负)异常。在3月(9月),除海平面高度异常的量级已减少,且较小的SSH正异常(负异常)出现在南海的中部以外,海平面高度异常的分布型与 1月(7月)类似; SSH的年循环的最大振幅出现在吕宋岛的西北海域;风的季节变化是南海SSH季节变化的主要原因。 相似文献
53.
通过大量的地震、钻井、录井、测井等资料分析,针对塔里木东部地区(简称塔东地区)上奥陶统进行了层序地层和沉积学方面的研究,结果表明,塔东地区上奥陶统可识别出1个二级层序、3个三级层序,自下而上分别是层序SQ1、SQ2和SQ3。层序SQ1识别出TST体系域,为一套深水盆地沉积,发育深水盆地、浊流沉积;层序SQ2可三分为LST、TST和HST体系域,LST体系域发育海退背景下的陆架边缘三角洲沉积,TST体系域为快速水进期,发育海相泥岩沉积,HST发育高水位滨岸沉积;SQ3发育浅海沉积,主要为三角洲—滨岸沉积体系。地层层序发育和沉积相分布受控于构造运动、沉积物源供给和相对海平面升降3个因素。3套层序的划分明确了塔东地区上奥陶统潜在的源岩层、储层和盖层的分布,其中层序SQ1为有利的烃源岩层、SQ2陆架边缘三角洲是潜在的有利储层,SQ3发育的滨岸砂岩为已经证实的油气藏。 相似文献
54.
Surface and bottom water samples were collected from 39 widely spaced stations in Lake Rotorua in February 1967 and from 12 stations in Lake Rotoiti in March 1967. In Lake Rotorua, data obtained from these samples showed that small horizontal differences existed between the southern and northern parts of the lake probably related to the higher inflow of plant nutrients at the southern end and to the prevailing southerly wind concentrating phytoplankton populations at the northern end. Lake Rotoiti, which differed from Lake Rotorua in being thermally stratified, showed no important horizontal differences, Vigorous mixing in the strata probably being accomplished by deep seiches except in the shallow western basin of the lake, where the inflow from Lake Rotorua occurs. Serial vertical hauls for a zooplankton survey of Lake Rotoiti were taken from three stations in March 1967. The distribution of zooplankton was complex because diurnal vertical migrations of the animals were combined with horizontal movement of the water layers. 相似文献
55.
Florent Gasparin Alexandre Ganachaud Christophe Maes 《Deep Sea Research Part I: Oceanographic Research Papers》2011,58(9):956-969
Waters from the South Equatorial Current (SEC), the northern branch of the South Pacific subtropical gyre, are a major supply of heat to the equatorial warm pool, and have an important contribution to climate variability and ENSO which motivated the Southwest Pacific Ocean and Climate Experiment (SPICE, CLIVAR/WCRP). Initially a broad westward current extending from the equator to 30°S, the SEC splits upon arriving at the major islands and archipelagoes of Fiji (18°S, 180°E), Vanuatu (16°S, 168°E), and New Caledonia (22°S, 165°E), resulting in a complex system of western boundary currents and zonal jets that feed the Coral and Solomon Seas. We focus here on the formation of one specific jet feeding the Coral Sea, the North Caledonian Jet (NCJ). Using a combination of recent oceanographic cruises, we describe the ocean circulation to the northeast of New Caledonia, where the SEC forms a western boundary current that ultimately becomes the NCJ. This current, which we document for the first time and propose to refer to as the East Caledonian Current (ECC), has its core located 10-100 km off the east coast of New Caledonia, and extends vertically to at least 1000 m depth. Water mass properties show continuous westward transports through the ECC, from the SEC to the NCJ in both the South Pacific Tropical Waters in the thermocline and Antarctic Intermediate Waters near 700 m depth. The ECC extends about 100 km horizontally; its average 0-1000 m transport was estimated at 14.5±3 Sv off the north tip of the New Caledonian reef, with a maximum of 20 Sv in May 2010. South of that the upstream branch of the ECC east of the Loyalty is close to 8 Sv suggesting an important additional contribution from central Pacific waters carried by the SEC at 16°S and diverted to our region through the western boundary current system east of Vanuatu. 相似文献
56.
Mark E. Baird Jason D. EverettIain M. Suthers 《Deep Sea Research Part II: Topical Studies in Oceanography》2011,58(5):699-711
The research vessel Warreen obtained 1742 planktonic samples along the continental shelf and slope of southeast Australia from 1938-42, representing the earliest spatially and temporally resolved zooplankton data from Australian marine waters. In this paper, Warreen observations along the southeast Australian seaboard from 28°S to 38°S are interpreted based on synoptic meteorological and oceanographic conditions and ocean climatologies. Meteorological conditions are based on the NOAA-CIRES 20th Century Reanalysis Project; oceanographic conditions use Warreen hydrological observations, and the ocean climatology is the CSIRO Atlas of Regional Seas. The Warreen observations were undertaken in waters on average 0.45 °C cooler than the climatological average, and included the longest duration El Niño of the 20th century. In northern New South Wales (NSW), week time-scale events dominate zooplankton response. In August 1940 an unusual winter upwelling event occurred in northern NSW driven by a stronger than average East Australian Current (EAC) and anomalous northerly winds that resulted in high salp and larvacean abundance. In January 1941 a strong upwelling event between 28° and 33°S resulted in a filament of upwelled water being advected south and alongshore, which was low in zooplankton biovolume. In southern NSW a seasonal cycle in physical and planktonic characteristics is observed. In January 1941 the poleward extension of the EAC was strong, advecting more tropical tunicate species southward. Zooplankton abundance and distribution on the continental shelf and slope are more dependent on weekly to monthly timescales on local oceanographic and meteorological conditions than continental-scale interannual trends. The interpretation of historical zooplankton observations of the waters off southeast Australia for the purpose of quantifying anthropogenic impacts will be improved with the use of regional hindcasts of synoptic ocean and atmospheric weather that can explain some of the physically forced natural variability. 相似文献
57.
台风过程可使海洋悬浮物浓度的分布在短时间内发生极大变化,并影响海洋生态环境以及海洋资源的分布。受台风期间海洋观测数据的限制,台风过程对海洋悬浮物浓度的影响尚不明确。本文利用GOCI (Geostationary Ocean Color Imager,GOCI)卫星遥感数据,以2019年8月台风“利奇马”为例,对其过境前后东中国海表层悬浮物浓度的时空变化进行了定量研究。结果表明,台风“利奇马”对闽浙沿岸的影响程度最大,使悬浮物质量浓度中高值(≥5 mg/L)覆盖面积和浓度平均值分别增大92%和62%,影响持续时间为4 d;对长江口附近海域的影响程度次之,使悬浮物浓度中高值覆盖面积和浓度平均值分别增大19%和17%,影响持续时间为3 d;对苏北浅滩的影响程度最小,悬浮物质量浓度中高值覆盖面积变化不大,但浓度平均值增大了30%,影响持续时间为4 d。研究结果表明卫星遥感数据可以量化台风过程对东中国海表层悬浮物浓度的影响,弥补极端天气条件下无法进行现场观测的不足。 相似文献
58.
东海太平洋褶柔鱼角质颚的形态学分析 总被引:2,自引:0,他引:2
依据2010年9月及2011年5月、9月东海渔业资源底拖网调查采集的139尾(雌性66尾,雄性73尾)太平洋褶柔鱼(Todarodes pacificus)样本的胴长、体重和角质颚各部分的长度数据,分析了东海太平洋褶柔鱼角质颚的形态学特征。结果表明:(1)太平洋褶柔鱼角质颚上、下颚的喙长(RL)、头盖长(HL)、脊突长(CL)、翼长(WL)、翼宽(WW)等长度差异较大;(2)伴随RL的增长,HL、CL、WL、WW呈现极显著的异速生长特征(P<0.001);(3)各长度指标随胴长、体重的增长呈显著的线性增长趋势;(4)RL/CL、HL/CL的比值非常稳定,随胴长、体重的变化很小,可作为东海太平洋褶柔鱼角质颚形态特征的稳定指标。 相似文献
59.
60.
Based on the twice-daily marine atmospheric variables which were derived mostly from the weather maps for 18 years period
from 1978 to 1995, the surface heat flux over the East Asian marginal seas was calculated at 0.5°×0.5° grid points twice a
day. The annual mean distribution of the net heat flux shows that the maximum heat loss occurs in the central part of the
Yellow Sea, along the Kuroshio axis and along the west coast of the northern Japanese islands. The area off Vladivostok turned
out to be a heat-losing region, however, on the average, the amount of heat loss is minimum over the study area and the estuary
of the Yangtze River also appears as a region of the minimum heat loss. The seasonal variations of heat flux show that the
period of heat gain is longest in the Yellow Sea, and the maximum heat gain occurs in June. The maximum heat loss occurs in
January over the study area, except the Yellow Sea where the heat loss is maximum in December. The annual mean value of the
net heat flux in the East/Japan Sea is −108 W/m2 which is about twice the value of Hirose et al. (1996) or about 30% higher than Kato and Asai (1983). For the Yellow Sea, it is about −89 W/m2 and it becomes −75 W/m2 in the East China Sea. This increase in values of the net heat flux comes mostly from the turbulent fluxes which are strongly
dependent on the wind speed, which fluctuates largely during the winter season.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献