首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   258篇
  国内免费   583篇
测绘学   7篇
大气科学   854篇
地球物理   134篇
地质学   86篇
海洋学   199篇
天文学   11篇
综合类   37篇
自然地理   85篇
  2024年   5篇
  2023年   11篇
  2022年   28篇
  2021年   30篇
  2020年   41篇
  2019年   54篇
  2018年   50篇
  2017年   54篇
  2016年   41篇
  2015年   49篇
  2014年   65篇
  2013年   72篇
  2012年   50篇
  2011年   50篇
  2010年   55篇
  2009年   86篇
  2008年   66篇
  2007年   63篇
  2006年   58篇
  2005年   61篇
  2004年   52篇
  2003年   54篇
  2002年   51篇
  2001年   44篇
  2000年   45篇
  1999年   44篇
  1998年   46篇
  1997年   18篇
  1996年   26篇
  1995年   13篇
  1994年   7篇
  1993年   11篇
  1992年   4篇
  1991年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有1413条查询结果,搜索用时 796 毫秒
121.
The Huanghe, the second largest river in China, is now under great pressure as a water resource. Using datasets of river water discharge, water consumption and regional precipitation for the past 50 years, we elucidate some connections between decreasing water discharges, global El Niño/Southern Oscillation (ENSO) events and anthropogenic impacts in the drainage basin. Global ENSO events, which directly affected the regional precipitation in the river basin, resulted in approximately 51% decrease in river water discharge to the sea. The degree of anthropogenic impacts on river water discharge is now as great as that of natural influences, accelerating the water losses in the hydrological cycle. The large dams and reservoirs regulated the water discharge and reduced the peak flows by storing the water in the flood season and releasing it in the dry season as needed for agricultural irrigation. Thus, as a result, large dams and reservoirs have shifted the seasonal distribution patterns of water discharge and water consumption and finally resulted in rapidly increasing water consumption. Meanwhile, the annual distribution pattern of water consumption also changed under the regulation of dams and reservoirs, indicating that the people living in the river basin consume the water more and more to suit actual agricultural schedule rather than depending upon natural pattern of annual precipitation. The combination of the increasing water consumption facilitated by the dams and reservoirs and the decreasing precipitation closely associated with the global ENSO events over the past half century has resulted in water scarcity in this world-famous river, as well as in a number of subsequent serious results for the river, delta and coastal ocean.  相似文献   
122.
Summary. The ability of the Australian sea-level monitoring network is assessed in the investigation of long-period sea-level signals. Through the character of coastal long waves, seasonal variations in level and inter-annual level anomalies, the importance of the south coast of the Continent is identified as a coherent indicator of large-scale marine and atmospheric teleconnections. The source of the sea-level signal is investigated by the tracing of progressive features, by the numerical modelling of wind stress over the Southern Ocean, by the modelling of the effect of monsoonal rains over the Indian Ocean and the mass transport through the Indonesian Strait. These features are related to the ENSO cycle which for the first time is linked, inter alia , with Southern Ocean mechanisms.  相似文献   
123.
Sustaining and increasing crop production and productivity has to be a major policy thrust for developing countries. Using a simulation approach different production strategies were evaluated conditioned on climate information to derive optimal strategies to help farmers reduce risk and increase productivity. By examining the existence of options in this case planting dates the study provides an analyses of the expected value and risks associated with changing decisions based on the availability of climate forecasts. The 15-March planting date produced the highest mean yield for the two cultivars examined although 1-April, 15-April and 1-May plantings had one to zero probability of crop failures compared to 15-March with crop failures in 4 out of 20 years. Results indicate losses of between 25 and 35 kg/day due to delays in planting from 15-March planting to 1-June planting for the 120- and 150-day cultivar. El niño years were associated with positive yield deviations for both cultivars and most planting dates. Farmers are known to make tactical adjustments to their management in light of information perceived relevant to the prospects of forthcoming crop. Although in its present form most current forecast products do not provide information on onset of the rainfall, however the information they do provide could play a crucial role in helping farmers reduce the risks posed by climatic variability.  相似文献   
124.
A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977–1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5–1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño – Southern Oscillation (ENSO) events of 1982–1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean–atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian–Australian monsoon cycle. Sudden cooling of SSTs by 1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.  相似文献   
125.
126.
利用NCEP再分析资料及我国160站降水资料,分析了2009年秋季东亚中、低纬环流特征和水汽输送特征及其对西南干旱的影响。同时讨论了秋季不同ENSO状态下东亚地区水汽输送差异,并与2009年进行比较。结果表明:孟加拉湾(简称孟湾)和南海之间环流形势在2009年秋季发生不对称变化,造成两地上空气压梯度减小,孟湾和南海上空分别出现一个反气旋式和气旋式距平环流中心,我国西南至中南半岛处于两距平环流中心之间偏北距平风控制之下,使得进入我国的西南气流异常减弱。水汽输送随之出现变化,南海南部季风低压水汽环流圈异常偏强,孟湾和南海水汽主体经中南半岛重回南海而未进入我国,最终造成我国西南降水异常偏少,出现干旱。这段时间内,西南地区上空出现异常下沉运动,对流活动受到抑制,加剧了干旱程度。在El Ni o年,我国西南及江南地区秋季水汽通量比La Ni a年明显增大,西北及华北则减少。2009年秋季我国的降水分布及南海一带水汽输送特征与普通El Ni o年特征不符,甚至出现相反状态,经对2009年秋季东亚El Ni o影响特征作简单模拟还原和分析,认为上述差异可能与El Ni o反气旋环流影响位置偏北有关。  相似文献   
127.
This paper reports the seasonal feature of the relationship between ENSO and the stratospheric Polar Vortex Oscillation (PVO) variability in the Northern Hemisphere.It is shown that the lagged ENSO-PVO coupling relationship exhibits distinct seasonal feature,due to the strong seasonality of PVO and ENSO.Specifically,the PVO variability not only during winter,but also in autumn and spring months,is significantly correlated with ENSO anomalies leading by seasons;however,no significant effect of ENSO is found on the PVO variability in winter months of November and February.Although a significant ENSO effect is primarily observed when ENSO leads PVO by about one year,a significant correlation is also found between PVO in the following spring months (M +1 A +1) and ENSO anomalies in the previous autumn (A-1 S-1 O- 1 N -1) when ENSO anomalies lead by about 18 months.The significant correlation between PVO in various seasons and the corresponding ENSO anomalies leading by seasons could be explicitly verified in most of the individual years,confirming that the lagged ENSO effect can largely modulate the seasonal timescale variability of PVO.Moreover,the composite spatial patterns of the zonal-mean temperature anomalies further show that the ENSO effect on the PVO in various seasons is related to the interannual variability of the seasonal timescale PVO events.  相似文献   
128.
Projected Changes in Asian Summer Monsoon in RCP Scenarios of CMIP5   总被引:2,自引:0,他引:2       下载免费PDF全文
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.  相似文献   
129.
Using the mesoscale model MM5, the development of initial condition uncertainties at different scales and amplitudes and their influences on the mesoscale predictability of the "0185" Shanghai heavy precipitation event are investigated. It is found that different initial conditions obtained from different globe model analyses lead to large variations in the simulated location and strength of the heavy precipitation, and the scales and amplitudes of the initial condition perturbations significantly influence the model error growth. The power spectrum evolution of the difference total energy (DTE) between a control simulation and a sensitivity experiment indicates that the error growth saturates after 12 h, which is the predictable time limit of the heavy precipitation event. The power spectrum evolution of the accumulated precipitation difference between the control and sensitivity simulations suggests a loss of the mesoscale predictability for precipitation systems of scales smaller than 300 kin, i.e., the predictable space for the heavy precipitation event is beyond 300 km. The results also show that the initial uncertainties at larger scales and amplitudes generally result in larger forecast divergence than the uncertainties at smaller scales and amplitudes. The predictable forecasting time and space can be expanded (e.g., from 12 to 15 h, and from beyond 300 kin to beyond 200 km) under properly prescribed initial perturbations at smaller scales and amplitudes.  相似文献   
130.
Recently, there is increasing evidence on the interaction of atmospheric high-frequency (HF) variability with climatic low-frequency (LF) variability. In this study, we examine this relationship of HF variability with large scale circulation using idealized experiments with an aqua-planet Atmospheric GCM (with zonally uniform SST), run in different zonal momentum forcing scenarios. The effect of large scale circulation changes to the HF variability is demonstrated here. The HF atmospheric variability is enhanced over the westerly forced region, through easterly vertical shear. Our study also manifests that apart from the vertical wind shear, strong low-level convergence and horizontal zonal wind shear are also important for enhancing the HF variance. This is clearly seen in the eastern part of the forcing, where the HF activity shows relatively maximum increase, in spite of similar vertical shear over the forced regions. The possible implications for multi-scale interaction (e.g. MJO–ENSO interaction) are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号