The retention of particulate matter of the Odra River in flooded areas was estimated by determining suspended particulate matter (SPM) elimination and particle-bound nutrient retention in a polder area of the Lower Odra Valley national park. Water and suspended matter samples collected before, during, and after the 1997 summer flood at the inlet and the outlet of the investigated polder (Polder A/B close to Schwedt) offer the opportunity to balance the matter retention inside the floodplain. The maximum level of retained SPM (more than 80%) was calculated for the record flood of summer 1997, while in ordinary winter floods retention differs between 33% and 70%. Basic properties of the flowing particles like settling velocity, density, loss on ignition etc. change on their way through the polder area. In the investigated Polder A/B a retention of at least 50% of particle-bound phosphorus which was independent of the incoming suspended matter load from the Odra River was observed. The retention of particle-bound nitrogen and carbon varied seasonally to different extents. The presented balance demonstrates that particle-bound nutrient retention in polders is an important factor in the self-purification process of the river system. Some additional effort was done to study changes of plankton composition: during a joint field experiment in spring 1998, the authors determined biological parameters (abundance and biomass of phytoplankton and zooplankton) of water samples at polder inflow and outflow points. 相似文献
Our results illustrate the performance of at-site and regional GEV/PWM flood quantile estimators in regions with different coefficients of variation, degrees of regional heterogeneity, record lengths, and number of sites. Analytic approximations of bias and variance are employed. For realistic GEV distributions and short records, the index-flood quantile estimator performs better than a 2-parameter GEV/PWM quantile estimator with a regional shape parameter, or a 3-parameter at-site GEV/PWM quantile estimator, in both humid and especially in arid regions, as long as the degree of regional heterogeneity is moderate. As regional heterogeneity or record lengths increases, 2-parameter estimators quickly dominate. Flood frequency models that assign probabilities larger than 2% to negative flows are unrealistic; experiments employing such distributions provide questionable results. This appraisal generally demonstrates the value of regionalizing estimators of the shape of a flood distribution, and sometimes the coefficient of variation. 相似文献
The effect of super absorbent polyacrylate (SAP) hydrogel amendment to different soil types on plant available water (PAW), evapotranspiration and survival of Eucalyptus grandis, Eucalyptus citriodora, Pinus caribaea, Araucaria cunninghamii, Melia volkensii, Grevillea robusta, Azadirachta indica, Maesopsis eminii and Terminalia superba was investigated. The seedlings were potted in 3 kg size polythene bags filled with sand, loam, silt loam, sandy loam and clay soils, amended at 0 (control), 0.2 and 0.4% w/w hydrogel. The tree seedlings were allowed to grow normally with routine uniform watering in a glass house set up for a period of eight weeks, after which they were subjected to drought conditions by not watering any further. The 0.4% hydrogel amendment significantly (p < 0.05) increased the PAW by a factor of about three in sand, two fold in silt loam and one fold in sandy loam, loam and clay soils compared to the control. Similarly, the addition of either 0.2 or 0.4% hydrogel to the five soil types resulted in prolonged tree survival compared to the controls. Araucaria cunninghammi survived longest at 153 days, while Maesopsis eminii survived least (95 days) in sand amended at 0.4% after subjection to desiccation. Evapotranspiration was reduced in eight of the nine tree species grown in sandy loam, loam, silt loam and clay soils amended at 0.4% hydrogel. It is probable that soil amendment with SAP decreased the hydraulic soil conductivity that might reduce plant transpiration and soil evaporation. 相似文献