首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   10篇
  国内免费   8篇
测绘学   6篇
大气科学   19篇
地球物理   13篇
地质学   9篇
海洋学   1篇
自然地理   2篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
31.
基于中国气象局国国家气候中心海气耦合模式(CGCM/NCC)预测产品和山西省50站夏季降水资料,利用典型因子回归的方法(CCA),建立了山西省夏季降水的统计降尺度预测模型。该预测模型选取了CGCM/NCC模式夏季500 h Pa高度场和海平面气压作为预测因子,分别选取了长江中下游地区和热带中东太平洋作为预报关键区。统计降尺度模型对2007~2014年山西省夏季降水的回算较模式原始结果有显著提高,除2008年外,空间距平相似系数(ACC)均通过了0.01的显著性检验,时间相关系数(TCC)在山西省大部分地区都有显著提高,最大可达0.6,降水预测(PS)评分在70分以上。检验结果显示,基于CCA降尺度方法建立的预测模型对山西省夏季降水模态预测的准确率较高且比较稳定,其预测效果远高于CGCM/NCC直接输出降水结果。  相似文献   
32.
应用1979—2010年MRI-CGCM模式回报、NCEP/NCAR再分析数据和中国东部降水观测资料检验了模式对东亚夏季风的模拟能力,并利用模式500 hPa高度场回报资料建立了中国东部夏季降水的奇异值分解(SVD)降尺度模型。模式较好地模拟了亚洲季风区夏季降水的气候态,但模拟的季风环流偏弱、偏南,导致降水偏弱。模拟降水的方差明显偏小,且模拟降水的外部、内部方差比值低,模拟降水受模式初值影响较大。模式对长江雨型的模拟能力最高,华南雨型次之,华北雨型最低。模式对东亚夏季风第1模态的模拟能力明显高于第2模态。对于东亚夏季风第1模态,模式模拟出了西太平洋异常反气旋,但强度偏弱,且未模拟出中高纬度的日本海气旋、鄂霍次克海反气旋,导致长江中下游至日本南部降水偏弱。各时次模拟环流均能反映但低估了ENSO衰减、印度洋偏暖对西太平洋反气旋的增强作用。对于东亚夏季风第2模态,模式对西太平洋的“气旋-反气旋”结构有一定的模拟能力,但未模拟出贝加尔湖异常反气旋和东亚沿海异常气旋,导致中国东部“北少南多”雨型在模拟中完全遗漏。仅超前时间小于4个月的模拟降水能够反映ENSO发展对降水分布的作用。通过交叉检验选取左场时间系数可以提高降尺度模型的预测技巧,SVD降尺度模型在华南、江南、淮河、华北4个区域平均距平相关系数分别为0.20、0.23、0.18、0.02,明显高于模式直接输出。   相似文献   
33.
    
Downscaling of remote sensing precipitation products and the forecasting of circulation model are always the intense interests in hydrology and meteorology. The essence of downscaling is primarily to enhance resolution of observation or simulated rainfall field, and to appropriately increase its details or high frequency characteristics. Precipitation, as the main driving factors of the earth’s hydrologic cycle, not only affects the moisture and heat condition of a certain river basin, but also affects the global water and heat circulation. Based on the properties of rainfall self-similarity structure, the mathematically ill-posed precipitation problem solving method was used in low resolution downscaling precipitation for high resolution reconstruction. When solving the downscaling ill-posed problem, the greedy method of orthogonal matching pursuit was introduced so as to get the best high-resolution estimation in an optimal sense. It is hard to imagine that we might be able to find very similar (in mathematical norms) precipitation patterns over relatively large storm-scales. However, finding similar features over sufficiently small sub-storm scales seems more feasible. Based on the characteristics that small scale organized precipitation features tend to recur across different storm environments, the precipitation of both high and low resolution was obtained by training, which could be used to reconstruct the desired high-resolution precipitation field. Multi-source merged precipitation products were used in this experiment. Given the consideration of incompleteness of merged precipitation dataset, it was firstly interpolated based on the method of Fields of Experts (FoEs), which could solve the problem that common interpolation method could hardly work on the interpolation for dataset where consecutive missing data exists. Secondly, ideal experiments of precipitation products downscaling were carried out, where smooth coupling sampling and resampling operator were adopted respectively. Assessment based on the metrics of fidelity and spatial structural similarity demonstrates that the method used in this paper is feasible.  相似文献   
34.
降尺度方法在安徽省月降水量预测中的试用   总被引:2,自引:1,他引:2  
基于NCEP/NCAR 500 hPa高度场、T63月动力延伸预报500 hPa高度场和安徽省降水资料,依据动力预报产品释用方法中所建立的月降水距平百分率预报方程,从月和旬两种不同时间尺度以及固定资料和选择资料来反演方程系数共4种降尺度方法来预报安徽省20个代表站月降水。1995—2005年11 a的回报检验表明了4种方法都具有较好的预报能力,从旬时间尺度较月尺度来预报月降水具有优势,在汛期和汛期降水偏多年更为明显。  相似文献   
35.
利用国家气候中心月动力延伸预报结果、NCEP/NCAR再分析资料和中国160个站观测资料,通过计算两次相关的方法,获取最优预报信息作为建立降尺度预测模型的预测因子,提取的最优预测因子同时满足既是观测环流要素场影响降水的关键区域,又是模式要素场预报的高技巧区域两个条件.结合挑选出的最优预测因子,利用最优子集回归建立月平均降水的降尺度预测模型.文中设计了消除预测因子和预测量的线性趋势值后建立预测模型(方案1)和直接利用原始资料建立预测模型(方案2)两种方案.经过独立样本检验,发现这两种方案建立的预测模型都能够提高月尺度降水预测,方案1对月尺度降水预测的距平相关系数平均可达0.35.利用该方案对超前时间分别为0、5、10 d的月动力延伸预报产品进行月降水的降尺度预测表明,模式初值信息不仅影响月动力延伸预报结果,也影响降尺度应用效果,利用超前时间为0和5 d的月动力延伸预报结果进行降水降尺度预测可在业务中参考.此外,降尺度预测模型中选取的预测因子不仪在统计上是显著的,同时也具有清楚的物理意义.  相似文献   
36.
Complexity‐reduction modelling can be useful for increasing the understanding of how the climate affects basin soil moisture response upon historical times not covered by detailed hydrological data. For this purpose, here is presented and assessed an empirical regression‐based model, the European Soil Moisture Empirical Downscaling (ESMED), in which different climatic variables, easily available on the web, are addressed for simplifying the inherent complexity in the long‐time studies. To accommodate this simplification, the Palmer Drought Severity Index, the precipitation, the elevation and the geographical location were used as input data in the ESMED model for predicting annual soil moisture budget. The test area was a large region including central Europe and Mediterranean countries, and the spatial resolution was initially set at 50 km. ESMED model calibration was made according to the soil moisture values retrieved from the Terrestrial Water Budget Data archive by selecting randomly 285 grid points (out of 2606). Once parameterized, ESMED model was performed at validation stage both spatially and temporally. The spatial validation was made for the grid points not selected in the calibration stage while the comparison with the soil moisture outputs of the Global Land Data Assimilation System–NOAH10 simulations upon the period 1950–2010 was carried out for the temporal validation. Moreover, ESMED results were found to be in good agreement with a root‐zone soil moisture product obtained from active and passive microwave sensors from various satellite missions. ESMED model was thus found to be reliable for both the temporal and spatial validations and, hence, it might represent a useful tool to characterize the long‐term dynamics of soil moisture–weather interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
In this paper we show that explicit treatment of risks and uncertainties in agricultural production planning may considerably alter strategies for achieving robust outcomes with regard to sustainable agricultural developments. We discuss production planning models under uncertainties and risks that may assist in planning location-specific production expansion within environmental and health risk indicators and constraints. The proposed approaches are illustrated with the example of spatially explicit livestock production allocation in China to 2030.  相似文献   
38.
The National Airborne Field Experiment 2006 (NAFE’06) was conducted during a three week period of November 2006 in the Murrumbidgee River catchment, located in southeastern Australia. One objective of NAFE’06 was to explore the suitability of the area for SMOS (Soil Moisture and Ocean Salinity) calibration/validation and develop downscaling and assimilation techniques for when SMOS does come on line. Airborne L-band brightness temperature was mapped at 1 km resolution 11 times (every 1–3 days) over a 40 by 55 km area in the Yanco region and 3 times over a 40 by 50 km area that includes Kyeamba Creek catchment. Moreover, multi-resolution, multi-angle and multi-spectral airborne data including surface temperature, surface reflectance (green, read and near infrared), lidar data and aerial photos were acquired over selected areas to develop downscaling algorithms and test multi-angle and multi-spectral retrieval approaches. The near-surface soil moisture was measured extensively on the ground in eight sampling areas concurrently with aircraft flights, and the soil moisture profile was continuously monitored at 41 sites. Preliminary analyses indicate that (i) the uncertainty of a single ground measurement was typically less than 5% vol. (ii) the spatial variability of ground measurements at 1 km resolution was up to 10% vol. and (iii) the validation of 1 km resolution L-band data is facilitated by selecting pixels with a spatial soil moisture variability lower than the point-scale uncertainty. The sensitivity of passive microwave and thermal data is also compared at 1 km resolution to illustrate the multi-spectral synergy for soil moisture monitoring at improved accuracy and resolution. The data described in this paper are available at www.nafe.unimelb.edu.au.  相似文献   
39.
Downscaling法在贵州冬季气温和降水预测中的应用   总被引:1,自引:0,他引:1  
基于CGCM模式输出500 hPa位势高度场、NCEP/NCAR再分析500 hPa高度资料、贵州冬季降水和气温历史资料,利用降尺度法,对贵州冬季降水和气温预报的技巧和预测效果进行了预测试验和改进。结果表明,该方法从动力与统计相结合的角度,给出季尺度大气环流与局地降水、气温之间的关系,有明确的动力学背景和天气学意义。20年回算及两年回报试验证明了该关系的合理性;对贵州冬季降水的预测率约70%,而对气温的预测率为65%左右。另外,通过对气温反演方程订正后,其预测率达67%左右;在极端异常年,该方法对降水的预测率变幅不大,而对气温的预测效果影响极大。最后利用该方法对2005年贵州冬季降水和气温趋势进行了展望。  相似文献   
40.
Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号