首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1553篇
  免费   392篇
  国内免费   178篇
测绘学   80篇
大气科学   150篇
地球物理   656篇
地质学   636篇
海洋学   302篇
天文学   19篇
综合类   58篇
自然地理   222篇
  2024年   5篇
  2023年   19篇
  2022年   43篇
  2021年   80篇
  2020年   84篇
  2019年   82篇
  2018年   59篇
  2017年   84篇
  2016年   71篇
  2015年   67篇
  2014年   100篇
  2013年   126篇
  2012年   94篇
  2011年   113篇
  2010年   88篇
  2009年   85篇
  2008年   98篇
  2007年   99篇
  2006年   64篇
  2005年   84篇
  2004年   74篇
  2003年   80篇
  2002年   59篇
  2001年   48篇
  2000年   49篇
  1999年   36篇
  1998年   48篇
  1997年   29篇
  1996年   29篇
  1995年   29篇
  1994年   17篇
  1993年   16篇
  1992年   17篇
  1991年   6篇
  1990年   11篇
  1989年   11篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有2123条查询结果,搜索用时 312 毫秒
241.
目前深水水道的分类方案较多,本文基于深水水道的形态学特征,且聚焦于单一型深水水道,将其划分为顺直型(曲率介于1~1.25)、低弯度S型(曲率介于1.25~1.5)和高弯度S型(曲率1.5)。其中,顺直型水道侵蚀作用最强,往往不发育天然堤沉积,无侧向加积;低弯度S型水道发育天然堤,并具有侧向加积;高弯度S型天然堤及侧向加积最为发育,决口扇常与之伴生。深水水道的曲率是水道形态的直观表现,曲率大小主要受深水地貌即深水地形坡度的影响。在上陆坡区域,地形坡度较大,沉积物能量强,深水水道以顺直型为主。中陆坡区域,随着地形坡度的减缓,水道的弯曲形态也逐渐增加,形成低弯度S型,直至下陆坡,水道演变为高弯度的S型。  相似文献   
242.
活动造山带基岩河流地貌研究,目前已成为构造地貌学研究的前沿和热点。河道宽度形态的调整变化是基岩河流响应构造、岩性和气候等扰动的重要方式之一。通过研究祁连山北部地区6个重点流域基岩河道的宽度形态发现:河道宽度总体上呈现出东西向和南北向的变化特征,河道向下游增宽的速率,东段地区显著高于中段地区,低山带显著高于高山带;对比河道宽度的变化特征与构造抬升速率及岩性抗蚀性的变化,可以推断:在祁连山北部地区,基岩河道宽度响应构造抬升和岩性抗蚀性的变化进行了系统地调整,构造抬升控制了流域河道宽度变化的总体趋势,而岩性抗蚀性变化则导致了流域内部局部河段河道宽度的大幅波动。在祁连山北部地区开展的基岩河道宽度形态研究,为利用基岩河道形态研究造山带的构造变形奠定了基础,对于探索构造抬升背景下地貌的发育过程具有十分重要的意义。  相似文献   
243.
将多期切叠河道砂体归类合并,建立一个“垂向连续,横向联通的表外砂岩空间体”(其中砂岩间夹层厚度≤0.4 m)的自然层概念来控制多期河道复合切叠厚砂体。以北一匹断东萄一组1-4小层为例,利用自然层间砂体厚度、切叠程度、测井曲线形态、相叠加类型及砂体叠加期次将自然层分为5类;再依据砂体间切叠位置、切叠程度和切叠形态的差异建立自然层剖面表征方法;依据砂体叠加期次,建立自然层在平面上表征模式。  相似文献   
244.
Flood and ebb currents provide different contributions to the initiation and evolution of tidal channel networks, generating diverse network structures and channel cross-sections. In order to separate the effects of these contributions, a physical model of a sloping tidal-flat basin was set up in the laboratory. Depending on the degree of tidal asymmetry imposed offshore, either flood or ebb currents can be enhanced. The experimental results show that the ebb current has a higher capability to initiate and shape tidal networks than the flood current. Headward erosion is mainly induced by the ebb flow. The slightly inclined flat surface tends to reduce the energy of the flood current and to enhance the ebb current, thus prolonging the duration of morphodynamic activity as well as sediment motion. Overall, flood-dominated tides favour the formation of small-scale channel branches in the upper basin zone, while long lasting ebb-dominated tides result in more complex, wider and deeper tidal networks. © 2019 John Wiley & Sons, Ltd.  相似文献   
245.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   
246.
Researchers have associated channel-forming flows with reach-average shear stresses close to the entrainment threshold for the surface D50 . We conducted experiments using a model of a generic steep, gravel–cobble stream to test this association. Our results suggest that channel-forming flows fully mobilize the D50 , and produce shear stresses close to the entrainment threshold for the largest grains in the bed. The channel dimensions were set by flows capable of mobilizing between 85% and 90% of the bed surface, which produced a brief period of lateral instability lasting about 1 h, followed by a prolonged period of relative stability during which modest adjustments occurred, but during which the reach-average hydraulics remained about the same. The adjustments during the unstable phase of the experiments are characterized by rapid bank erosion, extensive deposits on the channel bed and a restructuring of the major morphologic elements of the stream. The adjustments during the stable phase of the experiments involved barform migration and bed surface coarsening but did not appreciably modify the physical template established by the end of the unstable phase. The behaviour we observed is not consistent with the concept of a dynamic equilibrium associated with a formative flow that is just capable of entraining the bed surface D50 . Instead, it suggests that rapid adjustments occur once a stability threshold is exceeded, which creates a template that constrains channel activity until another event drives the system across the stability threshold, and re-sets the template. While we believe that it is probably too simplistic to associate a channel-forming discharge with the entrainment threshold for a single grain size, our results suggest that the D95 is a more logical choice than the D50 © 2020 John Wiley & Sons, Ltd.  相似文献   
247.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
248.
Tracer studies are a commonly used tool to develop and test Einstein-type stochastic bedload transport models. The movements of these tracers are controlled by many factors including grain characteristics, hydrologic forcing, and channel morphology. Although the influence of these sediment storage zones related to morphological features (e.g., bars, pools, riffles) have long been observed to “trap” bedload particles in transport, this influence has not been adequately quantified. In this paper we explore the influence of channel morphology on particle travel distances through the development of a Bayesian survival process model. This model simulates particle path length distributions using a location-specific “trapping probability” parameter (pi ), which is estimated using the starting and ending locations of bedload tracers. We test this model using a field tracer study from Halfmoon Creek, Colorado. We find that (1) the model is able to adequately recreate the observed multi-modal path length distributions, (2) particles tend to accumulate in trapping zones, especially during large floods, and (3) particles entrained near a trapping zone will travel a shorter distance than one that is further away. Particle starting positions can affect path lengths by as much as a factor of two, which we confirm by modelling “starting-location-specific” path length probability distributions. This study highlights the importance of considering both tracer locations and channel topography in examinations of field tracer studies. © 2020 John Wiley & Sons, Ltd.  相似文献   
249.
梯级小水电的开发一定程度上破坏了河流连通性并阻碍了鱼类洄游通道。黑水河流域松新坝址为了满足鱼类上行产卵修建了松新鱼道,然而作为洄游物种生命周期中的关键行为,鱼类下行洄游的需求也同等重要。为了寻求一种可行、高效、低损伤的下行过鱼方式,了解河流中不同环境因素对鱼类下行效率的影响,本研究在金沙江下游支流黑水河松新水电站补水通道开展鱼类下行过坝效果评估研究。针对两种鲤科鱼类(棒花鱼Abbottina rivularis和短须裂腹鱼Schizothorax wangchiachii)幼鱼和两种鳅科鱼类(短体副鳅Paracobitis potanini和红尾副鳅Paracobitis variegatus)幼鱼各放鱼90尾,定量分析鱼种、水体透明度、放鱼位置、流量、水温、水位等因素对鱼类下行效率的影响。结果表明:棒花鱼、短须裂腹鱼、短体副鳅、红尾副鳅的下行率依次为22.22%(20尾)、28.89%(26尾)、8.89%(8尾)、15.56%(14尾);幼鱼下行成功率与上游河道水温呈正相关趋势,且放鱼位置、鱼种、上游河道水温和流量均对鱼类下行成功率有显著影响。通过构建二元Logistic回归模型识...  相似文献   
250.
The complex stream bank profiles in alluvial channels and rivers that are formed after reaching equilibrium has been a popular topic of research for many geomorphologists and river engineers. The entropy theory has recently been successfully applied to this problem. However, the existing methods restrict the further application of the entropy parameter to determine the cross-section slope of the river banks. To solve this limitation, we introduce a novel approach in the extraction of the equation based on the calculation of the entropy parameter (λ) and the transverse slope of the bank profile at threshold channel conditions. The effects of different hydraulic and geometric parameters are evaluated on a variation of the entropy parameter. Sensitivity analysis on the parameters affecting the entropy parameter shows that the most effective parameter on the λ-slope multiplier is the maximum slope of the bank profile and the dimensionless lateral distance of the river banks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号