首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   11篇
  国内免费   19篇
大气科学   22篇
地球物理   17篇
地质学   41篇
海洋学   4篇
天文学   5篇
综合类   1篇
自然地理   4篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   11篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1980年   1篇
排序方式: 共有94条查询结果,搜索用时 11 毫秒
61.
The Late Triassic Central Patagonian Batholith is a key element in paleogeographic models of West Gondwana just before to the break-up of the supercontinent. The preexisting classification of units of this batholith was mainly based on isotopic and geochemical data. Here we report the results of field mapping and petrography, backed up by three new 40Ar/39Ar biotite ages, which reveal previously unnoticed relationships of the rocks in the batholith. Based on the new information we present a reorganization of units where the batholith is primarily formed by the Gastre and the Lipetrén superunits. The Gastre Superunit is the oldest magmatic suite and is composed of I-type granites which display evidence of felsic and mafic magma interaction. It is formed by 4 second-order units: 1) equigranular hornblende–biotite granodiorites, 2) porphyritic biotite–hornblende monzogranites, 3) equigranular biotitic monzogranites and 4) hornblende quartz-diorites. Emplacement depth of the Gastre Superunit is bracketed between 6 and 11 km (1.8–3 kbar), and the maximum recorded temperatures of emplacement are comprised between 660 and 800 °C. The recalculated Rb/Sr age is 222 ± 3 Ma and the porphyritic biotite–hornblende monzogranites yielded a 40Ar/39Ar age in biotite of 213 ± 5 Ma. On the other hand, the Lipetrén Superunit is made up by fine-grained biotitic monzo- and syenogranites that postdate magma hybridization processes and intrude all the other units. The recalculated Rb/Sr age for this suite is identical to a 40Ar/39Ar age in biotite extracted from one of its monzogranites (206.4 ± 5.3 and 206 ± 4 Ma, respectively). This and the observed textural features suggest very fast cooling related to a subvolcanic emplacement. An independent unit, the “Horqueta Granodiorite”, which has previously been considered as the record of a Jurassic intrusive stage in the Central Patagonian Batholith, gave a 40Ar/39Ar age in biotite of 214 ± 2 Ma. This and the reexamination of available isotopic data allow propose that this granodiorite unit is part of the Late Paleozoic intrusives in the region. The Late Triassic Central Patagonian Batholith is overlain by 190–185 Ma volcano-sedimentary rocks, suggesting that it was exposed sometime between the latest Triassic and earliest Jurassic times, roughly coeval with a major accretionary episode in the southwestern margin of Gondwana.  相似文献   
62.
德国VDI3784的S/P模式为三维流体动力学积分模式,其方程主要描述了无穷小体积元素的质量、动量、静态污染物质量浓度及能量的守恒。利用德国模式进行了冷却塔烟气排放不同参数、不同大气条件下烟气抬升高度的敏感性试验。结果表明:在影响烟气抬升高度的3个气象要素(风速,气温和湿度)中,风速和气温的变化对结果影响较大,而湿度影响较小。在D类稳定度,当环境风速从0.1 m/s增加到15.0 m/s时,抬升高度将从711.7 m变为38.5 m。随着环境温度的升高,抬升高度明显单调变小;当稳定度为A类,环境温度从10℃升到40℃时,烟气抬升最大高度从688.9 m降低到45.1 m,降低了14倍多。而环境湿度的变化,对抬升高度的影响不是很明显。对于E和F类,当环境湿度从20 %增加到70 %,最大抬升高度分别从115.3 m和84.6m降到112.9 m和81.7m,分别降低了3.43 %和2.08 %。在影响烟气抬升高度的其他3个因素(凉水塔直径,烟气出口速度和混合气体温度)中,混合气体温度的变化对结果影响较大,而凉水塔直径和烟气出口速度的影响较小。在各类稳定度条件下,当出口温度从20 ℃变到90 ℃时,烟气抬升高度增加1.2-13.3倍;在各类稳定度条件下,当凉水塔直径从30 m变到90 m,烟气抬升高度仅增加0.63-1.40倍;在各类稳定度条件下,当出口速度从2.5 m/s变到8 m/s,烟气抬升高度增加0.24-0.74倍。  相似文献   
63.
冻融后土体的渗透性、压缩性和固结特性是影响其冻结法施工工后变形速率和变形量的重要因素。本论文采用上海第四系滨海-浅海相淤泥质黏土,在-5~-25℃冻结负温下制备融土试样,通过含水率、密度、渗透和固结等一系列试验系统地揭示了冻结负温对沿海软黏土变形特性的影响;且结合不同冻结负温下冻融前后土体含水率、密度的差异,对软黏土竖向渗透系数、压缩系数等影响机理进行了探讨。结果表明:在封闭系统中经历一次冻融循环后,融土含水率、密度减小,渗透性、压缩性增大。随着冻结负温的降低,冻融作用对含水率的影响减弱,而对密度的影响增强。冻融作用引起的土体内部水分重分布和自由水相变是造成土体结构改变的根本原因,其结果导致土体冻融前后渗透性和压缩性的差异。融土压缩系数与初始孔隙比符合指数关系,故可通过室内试验结合拟合公式为变形量预测提供参数取值依据。融土垂向固结系数随冻结负温的降低呈线性减小,因此在变形量计算时应对冻结范围内土体进行温度分区。以上试验结果有助于推进冻结负温对软黏土变形特性的定量研究,为沿海软土地区冻结法应用提供依据。  相似文献   
64.
任战利 《地球物理学报》1995,38(03):339-349
本文应用磷灰石裂变径迹法研究了鄂尔多斯盆地的热历史.不同构造单元的磷灰石裂变径迹分析资料表明:在中生代晚期,地温梯度为3.3-4.1℃/100m,大地热流值为81-95mW/m2,高于盆地现今的平均地温梯度(2.80℃/100m)及平均大地热流值(63mW/m2).这次热事件有利于油气的生成、运移及大气田的形成.另外,在20-23Ma前,发生了一期显著的冷却事件.  相似文献   
65.
The cooling and reheating histories of dim isolated neutron stars (DINs) are discussed. Energy dissipation due to dipole spindown with ordinary and magnetar fields, and due to torques from a fallback disk are considered as alternative sources of reheating which would set the temperature of the neutron star after the initial cooling era. Cooling or thermal ages are related to the numbers and formation rates of the DINs and therefore to their relations with other isolated neutron star populations. The possibility of energy dissipation at ages greater than about 106 yrs is a potentially important factor in determining the properties of the DIN population. Interaction with a fallback disk, higher multipole fields and activity of the neutron star are briefly discussed.   相似文献   
66.
漳州后石电厂温排水数学模型   总被引:10,自引:0,他引:10  
徐啸  匡翠萍 《台湾海峡》1998,17(2):195-200
本文运用平面二维数学模型,计算和分析了福建漳州后石电厂在不同将机容量、各种工况和潮型条件下受纳水体温度场的时空变化。从取取水口温升以及环境容量方面考虑,几个方案均满足要求。设计单位根据水口降温、环境容量要求和工程造价三方面综合比较后,可从中以一个。  相似文献   
67.
An integrated study of fission-track (FT) dating and structural geology revealed a complex tectono-thermal history preserved in basement rocks of central Madagascar since the amalgamation of Gondwana at the end of the Cambrian. A detailed study of five domains argues for several cooling steps with associated brittle deformations during the separation of Madagascar.Titanite and apatite FT ages range between 483 Ma and 266 Ma and between 460 Ma and 79 Ma, respectively. The titanite FT data indicate that the final cooling after the latest metamorphic overprint was terminated at c. 500 Ma (FC1). A 150 Myr phase of minor cooling (SC2), possibly related to a phase of tectonic quiescence and isostatic compensation, followed episode FC1. Between the Carboniferous and Early Jurassic, when an intracontinental rift developed between East Africa and Madagascar, complex brittle deformation effected the western margin of Madagascar and led to differential cooling of small basement blocks (FC3–FC5). During this period, ductile structural trends were reactivated at the western basement margin and in the centre of the island.A Late Cretaceous thermal event (T1) affected apatite FT data of samples from western–central and the eastern margin of Madagascar. These ages are related to the Madagascar–India/Seychelles break-up, whereby the thermal penetration along the eastern coast was restricted to the west by the Angavo shear zone (AGSZ). The Cretaceous evolution of the eastern margin was associated with minor erosion and was triggered by vertical displacements along brittle structures.  相似文献   
68.
We calculated statistical average of thermal data to speculate regional thermal structure of the forearc area of the Japanese Islands. The three thermal statistical averages show a difference of a high thermal regime in the western part of forearc inner zone and a low in the Kanto forearc outer zone. The Kanto zone marks 18 K km−1 for mean geothermal gradient, 44 mW m−2 for mean heat flow, while the western inner zone shows 27 K km−1 for mean geothermal gradient, 63 mW m−2 for mean heat flow. The geothermal gradients of the Nobi Plain and the Osaka Plain in the western inner zone are 29 and 36 K km−1, respectively, while the value of the Kanto Plain in the Kanto zone is 21 K km−1. Taking account of the effect of accumulation of sediments, we see the difference in the thermal regime between the plains and conclude that the difference is significant. Heat flux in the crust depends on the volume of granite rich in radioactive elements. There are few granitic rocks in the Kanto zone, while granitic rocks are dominant in the western inner zone. The heat flow of 20 mW m−2 is attributed to the granitic rocks of about 8 km in thickness. There are two oceanic plate subductions of the Pacific plate and the Philippine Sea plate under the Kanto zone, while only the Philippine Sea plate has been subducting under the western inner zone. The model simulation based on thermal and subduction model shows a heat flow ranging 50-60 mW m−2 in the southwest Japan forarc area and a low value of about 20 mW m−2 in the northeast Japan forearc area. The heat flux from the cooling oceanic lithosphere depends on the age of plate. The Shikoku Basin, a part of the Philippine Sea plate, off the western inner zone is 15-30 Ma, while the Pacific plate off the Kanto zone is 122-132 Ma. Theoretically, heat flux values of 15 and 50 Ma oceanic plates range 60-120 mW m−2 and those of 122-132 Ma could be about 10 mW m−2. If the heat flux contribution from the Philippine Sea plate under the Kanto zone is smaller than the plate under the western inner zone, there could be a thermal regime difference in order of several tens of mW m−2. Conclusively, the cause of the difference of heat flux could be the uneven granitic rocks distribution and/or the difference of heat flux between the two subducting plate.  相似文献   
69.
A combined study using multi-radiometric dating and oxygen isotopic geothermometry was carried out for Mesozoic quartz syenite, alkali-feldspar granite and associated hydrothermal uranium mineralization at Dalongshan in the Middle-Lower Yangtze valley of east-central China. Radiometric dating of the quartz syenite yields a whole-rock Rb–Sr isochron age of 135.6±4.3 Ma, a zircon U–Pb isochron age of 132.9±2.2 Ma, and K–Ar ages of 126±2, 118±3 and 94±4 Ma for hornblende, biotite and orthoclase, respectively. The alkali-feldspar granite yields a whole-rock Rb–Sr isochron age of 117.3±3.3 Ma, a zircon U–Pb isochron age of 114.7±2.1 Ma, and K–Ar ages of 112±2, 109±3 and 88±4 Ma for hornblende, biotite and orthoclase, respectively. Oxygen isotope thermometry for both granites gives temperatures of 685 to 720, 555 to 580, 435 to 460 and 320 to 330 °C, for hornblende, magnetite, biotite and orthoclase respectively, when paired with quartz. The systematic differences among the ages by the different techniques on the different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 27.4 to 58.6 °C/Ma from 800 to 300 °C in the early stage, but slow cooling rates of 6.3 to 7.2 °C/Ma from 300 to 150 °C in the late stage. The regular sequence of oxygen isotope temperatures for the different quartz–mineral pairs demonstrates that diffusion is a dominant factor controlling the closure of both radiometric and O isotopic systems during granite cooling. Pitchblende U–Pb isochron dating yields an uranium mineralization age of 106.4±2.9 Ma, which is younger than the age of the granite emplacement and thus considerably postdates the time of magma crystallization, but is close to the closure time of the K–Ar system in the biotite. This points to a close relationship between granite cooling and ore-forming process. It appears that hydrothermal mineralization took place in the stage of slow cooling of the granite, whereas the rapid cooling of the granite was concurrent with the migration of hydrothermal fluids along fault structures. Therefore, the activity of the ore-forming hydrothermal system is temporally dictated by the cooling rates of the granite and may lag about 25 to 30 Ma behind the crystallization timing of associated granite.  相似文献   
70.
O. Nebel  K. Mezger   《Precambrian Research》2008,164(3-4):227-232
Dating low temperature events such as magmatic cooling or (hydro-)thermal surges in Archean and Proterozoic terranes is crucial in defining cratonal thermal stabilization after episodic continental growth during the Archean and Early Proterozoic. Rubidium–Sr chronology is potentially a powerful tool in this regard because of its low closure temperature, i.e., <400 °C in most minerals, but has until now been hampered by its relatively low precision compared to high-temperature chronometers. Consequently, Rb–Sr age investigations have so far failed to provide high-precision age constraints on the cooling of rocks older than 2 Ga. Here, it is demonstrated that internal Rb–Sr microchrons can yield important, high-precision age constraints on the cooling history of Archean intrusions. After careful mineral selection and chemical treatment, a Rb–Sr age of 2543.0 ± 4.4 Ma was obtained from the Archean Great Dyke, Zimbabwe Craton, in contrast to the intrusion age of 2575.8 ± 1 Ma, yielding an ambient average cooling of 5 ± 2 °C/Ma. The non-disturbed magmatic Rb–Sr cooling age of the Great Dyke marks the final stage of Zimbabwe craton stabilization and that the greater craton area did not experience any intensive later reheating event during metamorphic or tectonic events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号