首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   87篇
  国内免费   132篇
测绘学   4篇
大气科学   354篇
地球物理   122篇
地质学   54篇
海洋学   29篇
天文学   21篇
综合类   7篇
自然地理   30篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   13篇
  2019年   13篇
  2018年   11篇
  2017年   16篇
  2016年   8篇
  2015年   18篇
  2014年   24篇
  2013年   31篇
  2012年   19篇
  2011年   11篇
  2010年   20篇
  2009年   33篇
  2008年   37篇
  2007年   42篇
  2006年   36篇
  2005年   31篇
  2004年   29篇
  2003年   26篇
  2002年   24篇
  2001年   24篇
  2000年   19篇
  1999年   24篇
  1998年   26篇
  1997年   15篇
  1996年   4篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1978年   3篇
排序方式: 共有621条查询结果,搜索用时 9 毫秒
351.
Using the data of amplitude scintillations recorded at 244 MHz from the geostationary satellite, FLEETSAT (73‡E) at a low latitude station, Waltair (17.7‡N, 83.3‡E, 20‡N dip), during the increasing sunspot activity period of 1997–2000, the effect of the geomagnetic storms on the occurrence of ionospheric scintillations has been studied. A total of 60 SC storms studied during this period, following the Aarons’ criterion, reveals that the local time of onset of the recovery phase of the geomagnetic storms play an important role in the generation or inhibition of the ionospheric irregularities. Out of the 60 storms studied, nearly 60 to 70% satisfied the categories I, II and III of Aarons’ criteria. However, in the remaining 30 to 40% of the cases, no consistent results were observed. Thus, there is a necessity for further investigation of the effect of geomagnetic storms on ionospheric irregularities, particularly with reference to the altitude variations of the F-layer (h’F) relating to the changes in the local electric fields.  相似文献   
352.
灰色拓扑预测模型在初台预测中的应用   总被引:1,自引:0,他引:1  
周强 《海洋预报》1994,11(1):72-76
本文应用灰色系统理论,建立了南海初台的拓扑预测模型,并利用这些模型对南海初台未来十年出现日期作了预测分析,为南海台风的长期预测提供信息。  相似文献   
353.
Aerosols are very important in the Martian climate system. Aerosols get charged by the attachment of ions in the atmosphere. Charging of aerosols reduces the conductivity of the atmosphere as the very mobile ions are lost during the ion-aerosol attachment. During a dust storm the dust opacity increases and more ion-aerosol attachment process occurs and consequently conductivity reduces further. It was found that with the background aerosols (dust opacity ∼0.2), the conductivity close to the surface of Mars was reduced by a factor of 5, but during the dust storm (opacity ∼5) of 2001 the conductivity decreased by about 2 orders of magnitude.  相似文献   
354.
????????????????????????????????????????Fisher???Fisher???????????????????????????????????в???????????????????????£??÷???????????????????????????85%????????????????????????????????????????  相似文献   
355.
Low frequency stochastic variations of the geomagnetic AE-index characterized by 1/fb-like power spectrum (where f is a frequency) are studied. Based on the analysis of experimental data we show that the Bz-component of IMF, velocity of solar wind plasma, and the coupling function of Akasofu are insufficient factors to explain these behaviors of the AE-index together with the 1/fb fluctuations of geomagnetic intensity. The effect of self-organized criticality (SOC) is proposed as an internal mechanism to generate 1/fb fluctuations in the magnetosphere. It is suggested that localized spatially current instabilities, developing in the magnetospheric tail at the initial substorm phase can be considered as SOC avalanches or dynamic clusters, superposition of which leads to the 1/fb fluctuations of macroscopic characteristics in the system. Using the sandpile model of SOC, we undertake numerical modeling of space-localized and global disturbances of magnetospheric current layer. Qualitative conformity between the disturbed dynamics of self-organized critical state of the model and the main phases of real magnetospheric substorm development is demonstrated. It is also shown that power spectrum of sandpile model fluctuations controlled by real solar wind parameters reproduces all distinctive spectral features of the AE fluctuations.  相似文献   
356.
The characteristics of latitudinal angles of solar wind flow (θv) observed near earth have been studied during the period 1973-2003. The average magnitude of θv shows distinct enhancements during the declining and maximum phases of the sunspot cycles. A close association of Bz component of IMF in the GSE system and the orientation of meridional flows in the solar wind is found which depends on the IMF sector polarity. This effect has been studied in typical geomagnetic storm periods. The occurrence of non-radial flows is also found to exhibit heliolatitudinal dependence during the years 1975 and 1985 as a characteristic feature of non-radial solar wind expansion from polar coronal holes.  相似文献   
357.
Applying ACE data and pressure-corrected Dst index (Dst*), annual distributions of solar wind structures detected at L1 point (the first Lagrangian point between solar-terrestrial interval) and correlations between solar wind structures and geomagnetic storms in 1998-2008 have been studied. It was found that, within the Earth's upstream solar wind, the dominant feature was interplanetary coronal mass ejections (ICMEs), primarily magnetic clouds, during solar maximum period but corotating interaction regions (CIRs) at solar minimum. During rising and declining phases, solar wind features became unstable for the complicated solar corona transition processes between the maximum and minimum phases, and there was a high CIR occurrence rate in 2003, the early period of the declining phase, for the Earth's upstream solar wind was dominated by high-speed southern coronal-hole outflows at that time. The occurrence rate of sector boundary crossing (SBC) events was evidently higher at the late half of declining phase and minimum period. ICMEs mainly centered on the maximum period but CIRs on all the declining phase. The occurrence rate of ICMEs was 1.3 times of that of CIRs, and more than half of ICMEs were magnetic clouds (MCs). Half of magnetic clouds could drive interplanetary shock and played a crucial role for geomagnetic storms generation, especially intense storms (Dst*≤100 nT), in which 45% were jointly induced by sheath region and driving MC structure. Sixty percent of intense storms were totally induced by shock-driving MCs; moreover, 74% of intense storms were driven by magnetic clouds, 81% of them driven by ICMEs. Shock-driving MC was the most geoeffective interplanetary source for four fifths of it able to lead to storms and more than one-third to intense storms. The rest of intense storms (19%) were induced just by 3% of all detected CIRs, and most of CIRs (53%) were corresponding to nearly 40% moderate and small storms (−100 nT<Dst*≤−30 nT). The true sector boundary crossing (SBC) events actually had no obvious geoeffectiveness, just 6% of them corresponding to small storms.  相似文献   
358.
This study is concerned with the mechanisms of dust storm development in East Asia and the characteristics of the responsible synoptic systems. Two severe East Asian dust storms which occurred in spring 2002 are analyzed using synoptic and remote sensing data. The relationships between the formation and the movement of the dust storms and the evolution of the synoptic systems are examined. It is shown that a dust storm may develop when a synoptic system moves to the desert area of Northeast Asia with a surface wind speed exceeding 6 m s− 1. Numerical simulations of the two dust storms are carried out using a dust storm forecasting model. The performance of the model is verified with observations. The dust sources are found to be consistent with the desert regions in Northeast Asia, but cover a somewhat larger area than the observations suggest. Finally, we present a conceptual model of dust storm generation and movement in East Asia on the basis of numerical modeling and synoptic analysis.  相似文献   
359.
龙卷诱发原因的实例分析   总被引:3,自引:2,他引:1  
利用雷达、自动站等资料,对一次龙卷过程进行了讨论与研究,详细分析了龙卷发生发展过程中系统结构及环境场特征的变化,并对龙卷的诱发原因进行了动力学探讨,结果表明:龙卷发生于气旋性涡度的高度集中区,对流层中层干冷空气的入侵,构成了上冷下暖的对流不稳定结构,当风场中的强风速带移近时,风速带上激发出中气旋系列,对流不稳定的加强,促使中气旋垂直对流强烈发展,从而导致龙卷天气的产生,进一步的动力学分析表明,当存在有较强的风垂直切变时,中尺度涡度方程中的倾斜项是造成中尺度扰动涡度变化的主要贡献者,也是这次龙卷天气产生的重要原因之一。  相似文献   
360.
During the ‘Convective and Orographically-induced Precipitation Study’ (COPS) performed in summer 2007, deep convection developed on July 15, although convective available potential energy was only moderate and convective inhibition was high. Convection was restricted to an area east of the Black Forest crest. Data analysis revealed that the convection was triggered by different mechanisms. Due to a surface high which was situated east of the Black Forest and a surface low which approached the investigation area from the west, a mesoscale convergence zone was established between the two regions and moved eastwards. Secondly, high insolation favoured the development of slope and valley winds and high evapotranspiration resulted in an increase of moisture in the planetary boundary layer (PBL). The thermally driven circulation systems formed a convergence zone along the mountain crest. When the synoptically induced mesoscale convergence zone reached the Black Forest, the different convergence zones superimposed optimally, such that strong updraughts were observed above the mountain. These updraughts penetrated the PBL-capping inversion and nearly reached the level of free convection. About 15 min after the convergence zone had passed the Black Forest crest, first clouds developed east of it. While moving further eastwards, the convergence zone intensified and became visible as a north-south oriented cloud line in the satellite images. Some deep convective cells with precipitation formed within the cloud line. The dense COPS network allowed the capture of the position and characteristics of the convergence zone and explains why convection developed in some restricted areas only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号