首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   80篇
  国内免费   226篇
测绘学   13篇
大气科学   279篇
地球物理   176篇
地质学   508篇
海洋学   183篇
天文学   15篇
综合类   11篇
自然地理   82篇
  2024年   3篇
  2023年   15篇
  2022年   45篇
  2021年   40篇
  2020年   24篇
  2019年   34篇
  2018年   31篇
  2017年   47篇
  2016年   61篇
  2015年   56篇
  2014年   69篇
  2013年   91篇
  2012年   25篇
  2011年   64篇
  2010年   43篇
  2009年   65篇
  2008年   79篇
  2007年   72篇
  2006年   54篇
  2005年   51篇
  2004年   43篇
  2003年   27篇
  2002年   32篇
  2001年   28篇
  2000年   36篇
  1999年   21篇
  1998年   18篇
  1997年   22篇
  1996年   7篇
  1995年   8篇
  1994年   12篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   1篇
  1978年   2篇
排序方式: 共有1267条查询结果,搜索用时 62 毫秒
421.
Previous research rarely considers the biogeochemistry process of the whole rock weathering layer-soil profile. The aim of Critical Zone science is re-understanding the structure and function of ecosystems from the canopy to bedrock, which emphasizes the relationship of material and energy between atmosphere and plant, between plant and soil, between soil and river in small watershed on the watershed scale. Carbon fixation and allocation are the key starting processes. Decomposition and transformation of soil carbon are the key turnover processes. Carbon migration and balance in small watershed are the key transfer processes. Further research is needed in the process, mechanism and ecology function of ecosystem carbon cycle from the canopy to bedrock based on the watershed scale. Carbon isotope technology has the function of indication, tracing and integration. Based on the 13C natural tracing and artificial labelling methods, we can further understand the process and mechnism of carbon biogeochemistry.  相似文献   
422.
The Upper Devonian carbonate reefs in West‐central Alberta are important petroleum reservoirs that are well‐known for their extensive secondary porosity. An outcrop analogue study indicates that an early matrix‐selective dolomitization event occurred which is characterized by a major Late Devonian sea water component with increased salinity because of evaporation. It is interpreted that the matrix (replacive) dolomite formed during the Famennian as the result of a combination of both seepage and latent reflux dolomitization, although an additional type or overprinting of later intermediate burial dolomitization cannot be excluded. Formation of the moulds is attributed mainly to the dissolution of undolomitized fossil cores, most typically stromatoporoids. Geochemical modelling indicates that carboxylic acid fluids have the highest potential for dissolving residual calcite in this case. Geochemical models consistent with this analysis and interpretations can reproduce the secondary porosity and suggest a viable dolomitization process for the localities studied.  相似文献   
423.
Carbon capture and sequestration (CCS) is one of the important options available for partially stemming greenhouse gas emissions from large point sources. The possibility of leaking from deep storage needs to be addressed. The Wadi Namaleh area in southern Jordan provides an interesting case study of how excess CO2 can be trapped in the form of carbonates in the near surface, even when the local geology is not obviously conducive for such a process.Carbonate veins are formed in surface alteration zones of rhyolite host rock in this arid region. The alteration zones are limited to areas where surface soil or colluvium are present. Oxygen, deuterium and carbon isotopes of the carbonates and near-surface ground water in the area suggest that the source of carbon is deep seated CO2, and that the carbonate precipitated in local meteoric water under ambient temperature conditions. Analysis of strontium in the carbonate, fresh rhyolite and altered host shows that the source for calcium is aeolian. Trace elements show that metal and REE mobility are constrained to the alteration zone.Thus, interaction of H2O, CO2 and atmospheric wet and dry deposition lead to the formation of the clayey (montmorillonite) alteration zone. This zone acts to trap seeping CO2 and water, and thus produces conditions of progressively more efficient trapping of carbon dioxide by means of a positive feedback mechanism. Replication of these conditions in other areas will minimize CO2 leakage from man-made CCS sites.  相似文献   
424.
西太平洋风尘沉积记录研究进展   总被引:1,自引:0,他引:1  
万世明  徐兆凯 《海洋与湖沼》2017,48(6):1208-1219
研究海底风尘组份、来源和通量的地质记录,对于理解风尘在行星辐射平衡、全球大洋的营养盐供应及碳循环中的作用,以及源区古气候和古大气环流重建有着非常重要的意义。作为全球第二大风尘源区的亚洲内陆,其风尘产物主要被东亚冬季风及西风带携带至西太平洋。现有西太平洋风尘沉积记录的工作主要集中在冰期-间冰期时间尺度,尤其近几年在西菲律宾海和赤道太平洋第四纪风尘物源及通量变化方面取得了重要的进展,在日本海中新世以来的长期风尘记录及其驱动机制方面也获得了重要认识。至少在晚第四纪以来的冰期-间冰期时间尺度上,从高纬度到赤道甚至南极的全球范围,风尘通量在冰期约高出间冰期2—3倍,表明冰期风尘源区更加干旱而风力更为强劲。在新生代以来,西太平洋的长期风尘输入主要反映了亚洲内陆干旱逐渐增强,是受到青藏高原隆起和全球变冷的共同影响。但是,总体上西太平洋风尘沉积的研究程度非常低,突出反映在以下几个方面:风尘从源到汇搬运和沉积过程的现代观测的缺乏、大洋风尘组分含量及通量定量化中的误区、西太平洋风尘沉积长期演变特征、机制及风尘长期输入对大洋生产力及全球碳循环的影响方面的研究亟待加强。  相似文献   
425.
Projected growth in the international shipping industry is set to outstrip CO2 reductions arising from incremental improvements to technology and operations currently being planned and implemented. Using original scenarios, this paper demonstrates for the first time that it is possible for a nation's shipping to make a fair contribution to meeting global climate change commitments, but that this requires transformation of the sector. The scale and nature of technology change varies depending on the level of demand and how this is satisfied. The scenarios show that to develop successful marine mitigation policy, it is essential to consider the interdependencies between ship speed, level and pattern of demand for services, and the extent and rate of innovation in propulsion technology. Across the scenarios, it is difficult to foresee how deep decarbonisation can be achieved without an immediate, fleet-wide speed reduction; and a land-based energy-system transition strongly influences shipping demand, which in turn, influences the extent of required low-carbon propulsion technology change. Setting the industry on a 2 °C heading requires multifaceted and near-term changes in the shipping sector, but these are unlikely to materialise without a major shift by stakeholders to realise new and innovative deep decarbonisation policies in the coming decade.  相似文献   
426.
Carbon capture and storage (CCS) is one method to reduce CO2 emissions to the atmosphere. As CCS has the greatest potential for greenhouse gas (GHG) emission reduction, it gains a wide currency in the developed countries. However, the technology for CCS does not spread at the international level especially to the developing countries like South China Sea states. As the CO2 storage period is quite long and potential environmental risks involved, fully deployed CCS projects need not only the technological support but the appropriate legal and regulatory regime to safeguard CCS operations. This article offers a survey of CCS projects in the South China Sea region and discusses the legal challenges associated with CCS activities in state practice.  相似文献   
427.
Challenged by the enormous pressure to reduce the global carbon emission, it is expected that the Arctic Ocean could absorb additional atmospheric CO2 with the retreating of sea-ice. The Chukchi Sea and adjacent waters, characterized by the highest carbon fixation in the global ocean and large carbon flux into the deep-ocean for sequestration, make substantial contributions to carbon cycling in the entire Arctic Ocean. Understanding the response mechanism of carbon cycling in this region to the rapidly changing environment is the foundation for the prediction of carbon sink in the Arctic Ocean. However, the response of carbon absorption and storage to climate change is still controversial, and the main controlling factors of the carbon cycle process remain unclear.Thus, to establish high-resolution coupled ocean-ice-carbon models can explore the influence of sea ice retreat on atmospheric CO2 and the vertical sinking carbon fluxes in Chukchi Sea, estimate the effectiveness of growing inflow and slope upwelling on carbon sink/source patterns, discuss the response of deep-ocean carbon sequestration to the changing environment, and evaluate the effectiveness of continental shelf pump in the Chukchi Sea as well as its role in the global carbon sink. Based on the challenge for the research of the Chukchi Sea carbon cycle research with rapidly changing climate, the basic ideas of establishing Arctic Ocean carbon cycling model as well as its key scientific issues to be resolved were proposed.  相似文献   
428.
Seasonal changes in water quality were measured in samples taken at various distances from shallow water across mudflat to mangroves during flood period and from mangroves across mudflat to shallow water during ebb period in a subtropical mangrove estuary (Zhangjiang Estuary, Fujian, China). The TN (total dissolved nitrogen), TP (total dissolved phosphorus), COD (chemical oxygen demand), and DOC (dissolved organic carbon) contents during the flood period were significantly higher than those during the ebb period. In contrast, the opposite was true for the POC (particulate organic carbon) content and transparency. The mangroves at Zhangjiang Estuary may trap nutrients at rates of 90.5 g N/m2/yr, 2.2 g TP/m2/yr, and 13.7 g C/m2/yr in the form of DOC, and export POC at a rate of 81.8 g/m2/yr. Our results support the hypothesis that the maintenance of estuarine water quality by mangroves occurs during flood periods.  相似文献   
429.
黄土碳酸盐碳同位素广泛应用于第四纪气候环境变化的研究中,以往的大多数研究中无论是利用钙结核、次生碳酸盐还是成壤碳酸盐,认为其反映了C4植物的丰度。黄土高原碳酸盐碳同位素表现为黄土层高,古土壤层中低,即黄土层中C4植物丰度高于古土壤层。然而,这样的结果和黄土有机碳同位素得到的结果矛盾,有机碳同位素的结果表明温度对C4植物的分布起到了决定性作用。由于有机碳同位素对植物类型的反映更为直接而可靠,因此碳酸盐碳同位素反映C4植物丰度存在疑问。对黄土高原黄土碳酸盐碳同位素的系统概括后认为,第四纪期间黄土碳酸盐碳同位素与C4植物有直接联系,但C4植物丰度不是唯一决定性的因素,碳酸盐碳同位素的指示意义存在复杂性。在黄土高原地区,植被发育程度、与大气CO2交换程度、植被本身的碳同位素值的变化以及原生碳酸盐的影响等因素都会对碳酸盐碳同位素产生影响。由黄土碳酸盐碳同位素的讨论可延伸到不同土壤碳酸盐碳同位素揭示的环境指示意义,不同的土壤环境,其气候条件、植被类型及发育程度、大气CO2的交换情况、微生物的活动及土壤次生碳酸盐受原生碳酸盐溶解的影响等因素都会对碳同位素产生不同程度影响,哪种或哪几种因素产生主要作用,在不同区域土壤环境中是不一样的。具体研究中需确定影响的核心因素,才能确定碳同位素的环境指示意义。  相似文献   
430.
The study reports and discusses the differences in δ13C and δ18O values of shells between several species of freshwater snails. Shells were derived from sediment samples collected from depths of 0.5, 1, 2 and 3 m along transects in two shallow eutrophic lakes located in mid-western Poland. Mean δ13C values of the shells ranged between −7.5 and −3.8‰ in Lake Jarosławieckie and between −8.1 and −5.2‰ in Lake Rosnowskie Duże, whereas mean δ18O values ranged between −2.2 and −0.2‰ and between −2.2 and 0.4‰ respectively in the studied lakes. A similar order of species in terms of shell isotope values, from least to most 13C and 18O-depleted was observed in both lakes and seems to indicate constancy of the factors controlling the stable isotope compositions of snail shells. We postulate that the nearly 4‰ difference in the mean carbon stable isotope values between the species was primarily controlled by the amount of metabolic carbon incorporated into the shells and the δ13C values of the snail food. Different growth cessation temperatures and microhabitats of the species studied result in temporally and spatially varied DIC δ13C values, water δ18O values and water temperature of shell precipitation, and may thus differentiate the δ13C and δ18O values of shells. The range of δ13C and δ18O values of individual shells from a sediment sample (mean 2.35 and 2.15‰, respectively) is interpreted as reflecting an intraspecific variability of isotope compositions in shells from a population and changes of the ambient conditions during the accumulation of the sediment layer. The species-specificity and intraspecific variability in C and O isotopic compositions of shells allow concluding that in palaeolimnological studies, stable isotope analyses should be performed on a set of mono-specific shells representing mean isotope compositions of the species for the interval studied rather than single shells or multispecific bulk shell material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号