首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   80篇
  国内免费   226篇
测绘学   13篇
大气科学   279篇
地球物理   176篇
地质学   508篇
海洋学   183篇
天文学   15篇
综合类   11篇
自然地理   82篇
  2024年   3篇
  2023年   15篇
  2022年   45篇
  2021年   40篇
  2020年   24篇
  2019年   34篇
  2018年   31篇
  2017年   47篇
  2016年   61篇
  2015年   56篇
  2014年   69篇
  2013年   91篇
  2012年   25篇
  2011年   64篇
  2010年   43篇
  2009年   65篇
  2008年   79篇
  2007年   72篇
  2006年   54篇
  2005年   51篇
  2004年   43篇
  2003年   27篇
  2002年   32篇
  2001年   28篇
  2000年   36篇
  1999年   21篇
  1998年   18篇
  1997年   22篇
  1996年   7篇
  1995年   8篇
  1994年   12篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   1篇
  1978年   2篇
排序方式: 共有1267条查询结果,搜索用时 671 毫秒
271.
Reversed-phase liquid chromatography/mass spectrometry (LC/MS) is introduced as a new molecular fingerprinting technique for tracing terrigenous dissolved organic matter (DOM) and its photochemical decay in the ocean. DOM along a transect from the mangrove-fringed coast in Northern Brazil to the shelf edge was compared with mangrove-derived porewater DOM exposed to natural sunlight for 2–10 days in a photodegradation experiment. DOM was isolated from all samples via solid-phase extraction (C18) for LC/MS analysis. DOM in the estuary and ocean showed a bimodal mass distribution with two distinct maxima in the lower m/z range from 400 to 1000 Da (intensity-weighted average of 895 Da). Terrigenous porewater DOM from the mangroves was characterized by a broad molecular mass distribution over the detected range from 150 to 2000 Da (intensity-weighted average of 1130 Da). Polar compounds, i.e., those that eluted early in the reversed-phase chromatography, absorbed more UV light and had on average smaller molecular masses than the more apolar compounds.  相似文献   
272.
Thermogenic organic matter dissolved in the abyssal ocean   总被引:1,自引:2,他引:1  
Formation and decay of thermogenic organic matter are important processes in the geological carbon cycle, but little is known about the fate of combustion-derived and petrogenic compounds in the ocean. We explored the molecular structure of marine dissolved organic matter (DOM) for thermogenic signatures in different water masses of the Southern Ocean. Ultrahigh-resolution mass spectrometry via the Fourier transform-ion cyclotron resonance technique (FT-ICR-MS) revealed the presence of polyaromatic hydrocarbons (PAHs) dissolved in the abyssal ocean. More than 200 different PAHs were discerned, most of them consisting of seven condensed rings with varying numbers of carboxyl, hydroxyl, and aliphatic functional groups. These unambiguously thermogenic compounds were homogenously distributed in the deep sea, but depleted at the sea surface. Based on the structural information alone, petrogenic and pyrogenic compounds cannot be distinguished. Surface depletion of the PAHs and first estimates for their turnover rate (> 1.2 · 1012 mol C per year) point toward a primarily petrogenic source, possibly deep-sea hydrothermal vents, which is thus far speculative because the fluxes of combustion-derived and petrogenic matter to the ocean are not well constrained. We estimate that > 2.4% of DOM are thermogenic compounds, and their global inventory in the oceans is > 1.4 · 1015 mol C, significantly impacting global biogeochemical cycles.  相似文献   
273.
Incorporation of 14C-depleted (old) dissolved organic carbon (DOC) on/into particulate organic carbon (POC) has been suggested as a possible mechanism to explain the low Δ14C-POC values observed in the deep ocean [Druffel, E.R.M., Williams, P.M., 1990. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347, 172–174.]. A shipboard incubation experiment was performed in the Sargasso Sea to test this hypothesis. Finely ground dried plankton was incubated in seawater samples from the deep Sargasso Sea, both with and without a biological poison (HgCl2). Changes in parameters such as biochemical composition and carbon isotopic signatures of bulk POC and its organic compound classes were examined to study the roles of sorptive processes and biotic activity on POC character. Following a 13-day incubation, the relative abundance of the acid-insoluble organic fraction increased. Abundances of extractable lipids and total hydrolyzable amino acids decreased for both treatments, but by a greater extent in the non-poisoned treatment. The Δ14C values of POC recovered from the non-poisoned treatment were significantly lower than the value of the unaltered plankton material used for the incubation, indicating incorporation of 14C-depleted carbon, most likely DOC. The old carbon was present only in the lipid and acid-insoluble fractions. These results are consistent with previous findings of old carbon dominating the same organic fractions of sinking POC from the deep Northeast Pacific [Hwang, J., Druffel, E.R.M., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science, 299, 881–884.]. However, the Δ14C values of POC recovered from the poisoned treatment did not change as much as those from the non-poisoned treatment suggesting that biological processes were involved in the incorporation of DOC on/into POC.  相似文献   
274.
New directions in black carbon organic geochemistry   总被引:8,自引:0,他引:8  
In the past 30 years, the field of black carbon (BC) research has expanded broadly, stretching from its traditional core in the atmospheric sciences into oceanography, soil science, and even anthropology. Results produced in this period of expansion have been exciting: BC has been detected in many important geochemical pools, and interesting new research directions open as we learn about the role of this byproduct of biomass burning in the carbon cycle. Especially important research directions will be the quantification of BC loss processes (both biotic and abiotic), measurement of BC decomposition products in environmentally relevant reservoirs, and exploration of the interactions between BC and its host organo-mineral matrix, including the role of BC in pedogenesis.However, along with exciting results, we have also seen apparent discrepancies between BC studies. These discrepancies occur at least in part because of a lack of a common language, common methods, and a common model of BC. This paper lays out the framework many BC researchers use to understand the role of BC in the carbon cycle, discussing the ‘combustion continuum’ BC model and the methodological continuum that this model implies.  相似文献   
275.
The deficit of 234Th relative to its radioactive parent 238U in the surface ocean can yield reliable estimates of vertical Particulate Organic Carbon (POC) fluxes to deeper waters, but only when coupled with an accurate ratio of POC concentration to activity of 234Th on sinking matter. Assuming a simple partitioning of suspended phytoplankton mass between single cells and flocs, we calculate the ratio of the POC flux estimated from 234Th deficit to the actual POC flux (p ratio, Smith, J.N., Moran, S.B., Speicher, E.A., in press. The p-ratio: a new diagnostic for evaluating the accuracy of upper ocean particulate organic carbon export fluxes estimated from 234Th/238U disequilibrium. Deep-Sea Research I.). The p ratios are calculated under the assumption that particle surface area is correlated with 234Th activity and particle volume is correlated with POC concentration. The value of the p ratio depends on the relative contributions of single cells and flocs to the vertical flux. When large single cells make up a significant fraction of the vertical flux, p ratios are less than one, meaning POC fluxes estimated from 234Th deficits underestimate actual POC fluxes. When large single cells are abundant but do not sink fast enough to contribute to vertical POC flux, p ratios are greater than one (up to 3 × overestimate). Factor analysis of the model indicates that altering the extent of flocculation in suspension and changing the density and maximum size of phytoplankton cells have the greatest effects on the p ratio. Failure to measure the properties of flocs when characterizing the ratio of POC to thorium on sinking matter potentially leads to large overestimation of the POC flux (over 20 ×). Failure to characterize the POC to thorium ratio of large particles, by, for example, destruction of phytoplankton cells in pumps, can lead to underestimation of POC flux. Estimates of POC flux should be most reliable in highly flocculated suspensions populated by small cells and rapidly sinking flocs. These conditions are often associated with intense phytoplankton blooms.  相似文献   
276.
对台湾地区18个湖泊水库水体中悬浮颗粒有机质之碳,氢,氧,氮,硫和叶绿素α的含量进行了分析,其中POO乃首度以元素分析仪直接测量。结果为,POC,POH,POO,PON,POS含量分别介于138-8370μg/L,13.7-926.1μg/L,31-2623μm/L,14-1265μg/L,1.9-49.7μg/L之间,Ch1.a含量则介于0.31-96.75μg/L之间,POM元素间原子数关系为  相似文献   
277.
In a context of neo-liberal environmental governance, imperatives for global climate change mitigation are motivating a new round of policy initiatives and projects aimed at carbon forestry: conserving and enhancing forest carbon stocks, and trading these values in emerging carbon markets. In this context modelling and measurement, always significant in framing and justifying forest policy initiatives, are of renewed importance, with a growing array of protocols focused on counting and accounting for forest carbon as a commodity. This article draws on perspectives from science and technology studies and environmental discourse analysis to explore how these modelling and measurement processes are being co-constructed with forest carbon policies and political economies, and applied in project design in local settings. Document analysis and key informant interviews are used to track and illustrate these processes in a pair of case studies of forest carbon projects in Sierra Leone and Ghana. These are chosen to highlight different project types – focused respectively on forest reserve and farm-forestry – in settings with multi-layered histories of people-forest relations, landscape change and prior project intervention. The analysis shows how longer established framings and assessments of deforestation are being re-invoked and re-worked amidst current carbon concerns. We demonstrate that measurement processes are not just technical but social and political, carrying and thus cementing particular views of landscape and social relations that in turn make likely particular kinds of intervention pathway, with fortress style conservation or plantations becoming the dominant approach. In the process, other possibilities – including alternative pathways that might treat and value carbon as part of complex, lived-in landscapes, or respond more adaptively to less equilibrial people–forest relations, are occluded.  相似文献   
278.
初旭  周振昊 《岩石学报》2022,38(5):1328-1344
地球大气中的碳含量控制着地球长期(百万年尺度)和短期气候。最近的一些工作表明,地质历史中温室气候的时期和高强度的岩浆作用之间可能存在时间上的重合。从而提出假设,即火山和侵入岩与地壳碳酸盐岩之间相互作用释放的二氧化碳可能在调节外生系统的长期碳收支方面发挥了重要作用。例如,在Pangea超大陆裂解的过程中,特提斯体系大陆弧与白垩纪环太平洋弧的活动时间上重合。这些剧烈的大陆弧活动导致的接触变质作用释放的CO_(2)可能有助于形成白垩纪的温暖气候。除了这些宏观假设之外,接触变质作用产生的碳通量仍有待岩石学研究来解决。岩浆的加热和流体的渗透会促使围岩发生脱碳反应。富含H_(2)O的流体渗透会显著降低CO_(2)或其它含碳组分的活度,并有效地从系统中移除反应产物,从而促使通过发生更多的脱碳反应来恢复化学平衡。因此,渗透流体的通量和模式,无论是岩浆还是天水来源,对研究碳通量至关重要。在本文中,我们回顾了岩浆侵入周围的热量和流体传输以及碳酸盐岩和碳质变泥质岩组合的脱碳反应。对现代火山弧的观察表明,如果岩浆与上覆板块的碳酸盐岩地层相互作用,则会产生大量的碳通量。白垩纪大陆弧中丰富的矽卡岩和钙硅酸盐地体为量化从露头到造山尺度的碳通量提供了多样的野外研究机会。最后,本文概述了未来研究将要探索或解决的技术问题,包括流体来源和流动模式、含盐流体的相平衡以及脱碳的时间尺度等。  相似文献   
279.
刘威  万博  晏圣超 《岩石学报》2022,38(5):1557-1563
鉴于大陆岩浆弧上盘广泛分布有碳酸盐岩,岩体上升侵位过程使其碳通量明显的高于洋内岛弧,从而有可能影响着地质历史长时间尺度(百万年)的气候变化。陆弧碳的排放可分为两部分,一部分是与喷出岩相关的火山作用,另一部分是与侵入岩相关的脱碳过程。侵入岩的体量一般是喷出岩体量的10倍以上,由此与侵入岩有关的脱碳作用释放的碳通量不可忽视,可能类似与喷出岩有关的火山作用释放的碳通量甚至更大。火山作用能够将气体直接排入大气中,因此在以往的工作中研究较为充分。但与侵入岩相关的脱碳过程如:矽卡岩化,发生在地下,关于地下脱碳过程如何将碳释放到大气中还缺少详细的工作。本文,通过对比研究火山地区和非火山地区与侵入岩相关的深部脱碳过程,发现深部碳可以通过区域断层系统、地下水系统和热泉、火山通道、隐爆角砾岩筒、高频率的岩浆热液事件等途径瞬时地释放进入大气。通过初步估算,发现单个矽卡岩矿化事件所产生的二氧化碳通量(0.02~0.2Mt/yr)能够与目前地球绝大部分的普通单个火山的碳通量(<0.5Mt/yr)类比。因此岩浆深部脱碳过程对大气的影响至少与火山相当,其对气候的影响不可忽视。  相似文献   
280.
Wetland is a transition zone between terrestrial and aquatic ecosystems, and is the source and sink of various biogenic elements in the earth’s epipelagic zone. In order to investigate the driving force and coupling mechanism of carbon (C), nitrogen (N) and phosphorus (P) migration in the critical zone of lake wetland, this paper studies the natural wetland of Dongting Lake area, through measuring and analysing the C, N and P contents in the wetland soil and groundwater. Methods of Pearson correlation, non-linear regression and machine learning were employed to analyse the influencing factors, and to explore the coupling patterns of the C, N and P in both soils and groundwater, with data derived from soil and water samples collected from the wetland critical zone. The results show that the mean values of organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in groundwater are 1.59 mg/L, 4.19 mg/L and 0.5 mg/L, respectively, while the mean values of C, N and P in the soils are 18.05 g/kg, 0.86 g/kg and 0.52 g/kg. The results also show that the TOC, TN and TP in the groundwater are driven by a variety of environmental factors. However, the concentrations of C, N and P in the soils are mainly related to vegetation abundance and species which influence each other. In addition, the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve, respectively. In order to establish a multivariate regression model, the soil N and P contents were used as the input parameters and the soil C content used as the output one. By comparing the prediction effects of machine learning and nonlinear regression modelling, the results show that coupled relationship equation for the C, N and P contents is highly reliable. Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号