首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2752篇
  免费   263篇
  国内免费   384篇
测绘学   510篇
大气科学   283篇
地球物理   438篇
地质学   846篇
海洋学   599篇
天文学   165篇
综合类   198篇
自然地理   360篇
  2024年   10篇
  2023年   13篇
  2022年   26篇
  2021年   76篇
  2020年   74篇
  2019年   84篇
  2018年   43篇
  2017年   83篇
  2016年   91篇
  2015年   91篇
  2014年   121篇
  2013年   168篇
  2012年   141篇
  2011年   195篇
  2010年   134篇
  2009年   131篇
  2008年   197篇
  2007年   193篇
  2006年   209篇
  2005年   163篇
  2004年   133篇
  2003年   138篇
  2002年   131篇
  2001年   95篇
  2000年   108篇
  1999年   79篇
  1998年   75篇
  1997年   54篇
  1996年   62篇
  1995年   54篇
  1994年   54篇
  1993年   37篇
  1992年   35篇
  1991年   24篇
  1990年   15篇
  1989年   18篇
  1988年   11篇
  1987年   3篇
  1986年   7篇
  1985年   8篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3399条查询结果,搜索用时 281 毫秒
21.
Juan  Tarazona  Wolf E.  Arntz Elba  Canahuire 《Marine Ecology》1996,17(1-3):425-446
Abstract. Monthly changes in the community structure of hypoxic soft-bottom macrobenthos have been studied at a station at 34 m depth in Ancón Bay (Peru) before and during two El Niño (EN) events. Of these events, 1982-83 is considered the strongest, and 1991–93 one of the most prolonged in the 20th century. On the oceanographic scale, EN 1982–83 ranges as "very strong", whereas EN 1991–93 ranges as "moderate".
The thermal anomalies at the station during EN 1982–83 (+ 7.8 °C) were almost twice those of EN 1991–93 (+ 4.1 °C). However, the community changes were not in all cases proportional to the extent of warming. Species numbers increased in a similar way (up to 24 species from near zero in each of the two events), but maximum faunal density was five times higher, and mean biomass was twice as high in 1982–83 compared with the event a decade later. Species diversity was slightly higher during EN 1982–83, whereas successional and trophic changes occurred on a broader scale during EN 1991–93. On the whole, the impact of the long-lasting event on the small soft-bottom macrofauna was not much weaker than that of the exceptionally strong event.
The authors discuss the mechanisms which may be responsible for the differences and similarities encountered in the benthic community dynamics during these two events. Both in the unusually strong and the unusually long EN, the community revealed a pattern of early biological response several months ahead of the onset of local warming which marks the official begin of EN. The question is addressed to what extent the increase of certain parameters in the benthic community could be used for predictive purposes.  相似文献   
22.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
23.
We studied how the extensive diversion of Colorado River water, induced by dams and agricultural activities of the last 70 years, affected the growth rates of two abundant bivalve mollusk species (Chione cortezi and Chione fluctifraga) in the northern Gulf of California. Shells alive on the delta today (‘Post-dam’ shells) grow 5.8–27.9% faster than shells alive prior to the construction of dams (‘Pre-dam’ shells). This increase in annual shell production is linked to the currently sharply reduced freshwater influx to the Colorado River estuary. Before the upstream river management, lower salinity retarded growth rates in these bivalves. Intra-annual growth rates were 50% lower during spring and early summer, when river flow was at its maximum. Growth rates in Chione today are largely controlled by temperature and nutrients; prior to the construction of dams and the diversion of the Colorado River flow, seasonal changes in salinity played an important role in regulating calcification rates.Our study employs sclerochronological (growth increment analysis) and geochemical techniques to assess the impact of reduced freshwater influx on bivalve growth rates in the Colorado River estuary. A combination of both techniques provides an excellent tool to evaluate the impact of river management in areas where no pre-impact studies were made.  相似文献   
24.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
25.
冬至初春黄海暖流的路径和起源   总被引:18,自引:0,他引:18  
主要根据近几年来中韩黄海水循环动力学合作调查结果,结合有关观测资料,进一步分析了冬至初春黄海暖流的路径和起源.与以往类似研究不同的主要有两点:(1)初步探讨了黄海暖流路径的季节和年际变异,并指出这种变异与北向风的强弱密切相关;(2)通过分析济州岛西侧海域混合水的去向,进一步确认了部分混合水绕济州岛运行,并进入济州海峡这一事实.同时,初步揭示进入黄海的混合水,即黄海暖流水,含有更多的东海陆架水成分.  相似文献   
26.
A multi-stage bulk materials acquisition system is examined from the viewpoint of dock operations. The whole process can be divided into four stages and treated as four subsystems: ships scheduling planning, material yard planning, dock arrangement, and material discharging. Since the structure and the complexity of each subsystem is different, the solution approaches applied are also different with respect to each. To increase operations efficiency and data consistency, an integration of the subsystems by coordinating the operations sequence and data communications for the four subsystems is discussed. The four subsystems are illustrated by using the material docks of China Steel Corporation, and the models developed in this research are also validated. The results indicate that the models developed are capable of deriving solutions better than the existing ones. Although the discussions are confined to China Steel Corporation, the models can be applied to other companies with similar operations.  相似文献   
27.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   
28.
Abstract.  Rhodoliths provide a stable and three-dimensional habitat to which other seaweeds and invertebrates can attach. Although ecological factors affecting rhodolith beds have been studied, little is known about the effect of rhodolith species and growth-form on associated fauna. Experiments were conducted at three rhodolith beds in the central-west Gulf of California. Faunal abundance differed significantly in relation to rhodolith-forming species, but no significant differences were observed between different growth-forms. Rhodolith structure differs between the species Lithophyllum margaritae and Neogoniolithon trichotomum , and the combination of structure differences and rhodolith abundances may be responsible of the significant differences in faunal abundance and richness. Crustaceans, polychaetes and molluscs were the most important taxa in all three rhodolith beds. The amphipod species Pontogeneia nasa and the cnidarian Aiptasia sp. were dominant in both rhodolith beds, El Requesón and Isla Coyote, in Bahía Concepción. The Isla Coronados rhodolith bed was dominated by an unidentified harpacticoid copepod (Copepoda sp.1). Rhodolith species is more important than growth-form in determining abundance and richness of the associated fauna. Nevertheless, factors such as wave motion, depth, bioturbation and others should be considered when studying organisms associated with rhodolith beds.  相似文献   
29.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
30.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号