排序方式: 共有321条查询结果,搜索用时 15 毫秒
231.
The progress made fi'om Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3°, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-i and the northward shift decreased to 2.5°. The SPR features a northeast-southwest extended rain belt with a slope of 0.4°N/°E. The CMIP5 ensemble yielded a smaller slope (0.2°N/°E), whereas the CMIP3 ensemble featured an unre- alistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two ther- mal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs. 相似文献
232.
评估高温灾害的危险性变化,能够为区域高温灾害风险管理和制定减灾措施提供决策依据。本研究选取高温日数、最高温度和平均高温强度3个指标,基于1961—2020年中国2517个气象站点日最高温数据和CMIP6情景模式比较计划中SSP2-4.5情景下12个气候模式提供的2031—2099年未来气候预测数据集,用核密度概率估计方法计算了4个重现期(即5、10、20和50年)下3个指标的取值,对中国未来高温危险性变化进行了评估。结果表明:① 在SSP2.4-5情景下,中国的高温日数呈现出4个危险中心,分别是:西北干旱(半干旱)地区中部、华北和华中地区的交汇区域、西南地区中部和华南地区南部,并且高温日数从这4个中心向外逐渐减少;最高温度在空间上的分布北部大于南部,东部大于西部。平均高温强度的分布则呈现出从华北地区南部、西北干旱(半干旱)地区西部和东部地区西部向我国除青藏高原地区外的其它地区减少的趋势; ② 在SSP2.4-5情景下,随着重现期年限的增长,中国地区3个高温指标均呈增长趋势且增幅较大,并且高值范围也在不断扩大;③ 3个高温指标变化值均呈现出了明显的空间聚集性,3个指标共同显示的热点区域包括西南地区北部和南部、西北干旱(半干旱)地区中部和华北、华中地区的少部分区域,这些地区发生高温灾害的可能最大,同时根据高温日数变化和最高温度变化,东部地区西部发生高温灾害可能也较大,3个指标共同显示的冷点区域包括青藏高原地区东南部、西北干旱(半干旱)地区的西部和我国东南沿海地区,这些地区几乎不会发生高温危险。 相似文献
233.
Kequan ZHANG Jiakang DUAN Siyi ZHAO Jiankai ZHANG James KEEBLE Hongwen LIU 《大气科学进展》2022,39(7):1167-1183
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future. 相似文献
234.
借助英国气候研究所(Climate Research Unit, CRU)全球陆地格点分析数据集(CRU TS v4.0)月降水资料和24个国际耦合模式比较计划第五阶段(Coupled Model Intercomparison Project Phase 5, CMIP5)模式历史气候模拟及RCP4.5情景下的降水预估数据,设计了多种回归方案并对模式降水预估偏差进行订正。这些方案包括一元回归、一元对数回归、一元差分回归、一元对数差分回归、多元回归、多元对数回归、多元差分回归、多元对数差分回归和简单移除气候漂移等。2006~2015年中国大陆模式降水预估的订正结果表明,一元回归订正法普遍优于多元回归订正和扣除气候漂移订正法,其中一元对数回归法的效果最好,其降水距平同号率(Anomaly Rate, AR)和降水距平百分率相关系数(Anomaly Percentage Correlation Coefficient, APCC)最高,分别达到69%和0.5;而降水距平相关系数(Anomaly Correlation Coefficient, ACC)最高的是一元对数差分回归法。不同回归订正法所得预估结果的距平同号格点分布显示,一元对数回归法在北方优于南方,而一元差分(年际增量)或对数差分回归法在南方优于北方。这直接导致在中国南方区域(95°E以东,35°N以南)一元对数回归或多元对数回归订正结果的AR、ACC和APCC均低于对应的差分/对数差分回归法,在北方和西部地区则与此相反。因此,模式降水的回归订正方案具有区域性,这可能源于不同区域降水序列统计性质的差异。用区域组合回归订正法,即在南方用一元差分回归订正,其余地区用一元对数回归订正,其降水预估场的AR提高到72%,但ACC和APCC均略有下降,原因是差分回归订正增加了预估降水场的方差。对RCP4.5情景下2016~2045年24个模式集合平均降水预估的组合回归订正结果显示,相对于1976~2005年平均,未来30年降水异常大致呈南北少,中间多的格局,其中长江中下游、江南中西部、西南东北部、华南沿海和海南省等地降水偏少10%~20%,淮河流域、三江源区和台湾省降水偏多10%~40%,西北东部、华北和东北大部降水正常或略偏少。从降水百分率方差看,模式群的离散度(不确定度)呈现东部小,西部大的分布特征,说明模式预估的西北中部和青藏高原西部等降水偏少区的不确定性较大;而河套北部、华北南部和江南东部等地对应于2006~2015年检验期的“盲区”(模式与观测降水距平反号),其降水预估参考价值可能不大,需要引入他法加以改进。 相似文献
235.
CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验 总被引:3,自引:0,他引:3
利用北半球和青藏高原的观测资料,通过趋势分析、量值比较及小波分析等方法对已提交历史模拟结果的8个模式进行了比较.结果表明,各模式对北半球气温年变化模拟的较好,一般7、8月气温最高,1月气温最低,不存在相位差问题.各模式模拟的历史气温年际和年代际变化趋势比较一致,气温最大相差2.8℃以上;模拟的1850-2005年气温平均最高和最低值相差可达1.8℃左右;除1个模式外,其余模式都能较准确地模拟出至少有一次气温突变.对北半球降水的模拟,各模式都模拟出了降水的季节变化,但从年际变化趋势来看,4个模式模拟的降水为增大趋势,4个为减小趋势.对青藏高原的模拟,从变化趋势与观测气温的对比来看,8个模式中,除2个模式通过了0.05显著性水平检验外,其余均通过了0.01显著性水平检验;各模式都模拟出了青藏高原的降水中心,但对降水量值的模拟相差较大. 相似文献
236.
Tropical cyclone(TC) genesis over the western North Pacific(WNP) is analyzed using 23 CMIP5(Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index(GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets(ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July–October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTr ACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982–2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multimodel ensemble(MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20?N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982–1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21 st century, and then starts to decrease at the end of the 21 st century under the representative concentration pathway(RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of20?N, indicating more TCs could possibly be expected over the WNP under future global warming. 相似文献
237.
年代际气候预测计划(DCPP)是第六次国际耦合模式比较计划(CMIP6)的子计划之一,其目标是利用多模式开展气候系统年代际预测、可预测性和变率机制研究。DCPP设计了3组试验,即年代际回报试验、预报试验以及理解年代际变率机制和可预测性的敏感性试验。目前有21个模式拟参与DCPP计划,其中包括5个来自中国的模式。DCPP将推动解决气候系统从年际到年代际尺度预测相关的多项科学问题,评估当前气候预测系统预报技巧,挖掘潜在可预报性,研究长时间尺度气候变率形成机制,提供对科学和社会有用的预测产品。 相似文献
238.
A semi-distributed hydrological model of the Upper Niger and the Inner Niger Delta is used to investigate the RCP 4.5 scenario for 41 CMIP5 GCMs in the 2050s and 2080s. In percentage terms, the range of change in precipitation is around four times as large as for potential evapotranspiration, which increases for most GCMs over most sub-catchments. Almost equal numbers of sub-catchment–GCM combinations experience positive and negative precipitation change. River discharge changes are equally uncertain. Inter-GCM range in mean discharge exceeds that of precipitation by three times in percentage terms. Declining seasonal flooding within the Inner Delta is dominant; 78 and 68% of GCMs project declines in October and November for the 2050s and 2080s, respectively. The 10- and 90-percentile changes in mean annual peak inundation range from ?6136 km2 (?43%) to +987 km2 (+7%) for the 2050s and ?6176 km2 (?43%) to +1165 km2 (+8.2%) for the 2080s. 相似文献
239.
基于新的全球表面温度数据集CMST(China merged surface temperature),全面评估了参加国际耦合模式比较计划第5阶段(CMIP5)的27个全球气候模式1900—2017年的气候模拟结果(1900—2005年为模式历史模拟,2006—2017年为不同典型浓度路径下的预估)。泰勒图及各种统计参数的对比表明,一些模式无论在历史模拟时段,还是在历史模拟和近期预估拼接时段,都稳定、较好地模拟出了观测序列的变化特征。利用筛选出模拟效果相对较优的9个模式,系统比较了其集合平均MT9(mean model top 9)与所有模式的集合平均MAM(mean all models)。分析结果表明:无论在哪种排放路径下,不管是时间变化,还是从空间分布方面,多数模式可能高估了亚洲区域增暖趋势,导致MAM过高估计了亚洲区域温度变化幅度与长期趋势,而优选的模式集合MT9明显比MAM更接近于观测值。进一步,采用了MT9的预估结果分析了2018—2099年的亚洲区域预估的地表升温幅度:到2099年,在RCP2.6浓度路径下,MT9预估亚洲地区的升温幅度较小,约为0.08℃;在RCP4.5浓度路径下,升温约为1.20℃;在RCP8.5浓度路径下,升温将达3.54℃,这些结果均略小于所有模式集合MAM的升温幅度,因而更加合理;同时还基于MT9预估分析了2018—2099年的温度距平的空间变化。 相似文献
240.
北极地区不同冰龄的海冰厚度变化研究 总被引:1,自引:0,他引:1
In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite(ICESat)-based results show a thickness reduction over perennial sea ice(ice that survives at least one melt season with an age of no less than 2 year) up to approximately 0.5–1.0 m and 0.6–0.8 m(depending on ice age) during the investigated winter and autumn ICESat periods, respectively. Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)-based results provide a view of a continued thickness reduction over the past four decades. Compared to 1980 s, there is a clear thickness drop of roughly 0.50 m in 2010 s for perennial ice. This overall decrease in sea ice thickness can be in part attributed to the amplified warming climate in north latitudes. Besides, we figure out that strongly anomalous southerly summer surface winds may play an important role in prompting the thickness decline in perennial ice zone through transporting heat deposited in open water(primarily via albedo feedback) in Eurasian sector deep into a broader sea ice regime in central Arctic Ocean. This heat source is responsible for enhanced ice bottom melting, leading to further reduction in ice thickness. 相似文献