首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   13篇
地球物理   1篇
海洋学   2篇
  2017年   1篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
11.
CAR和SVM方法在郑州冬半年大雾气候趋势预测中的试用   总被引:2,自引:0,他引:2  
以郑州冬半年大雾日数为对象,在分析其气候特征的基础上,尝试大雾日数的气候趋势预测。首先选择气候预测中常用的环流特征量作为因子群,通过相关筛选,选取与预测对象相关系数较大的环流特征量作为预测因子,然后分别采用多变量自回归(CAR)和支持向量基(SVM)回归两种方法,建立郑州冬半年大雾日数预测模型。CAR方法回报正确率为88%,SVM方法回报正确率为82.4%;经2002/2003—2005/2006年4a的独立样本试报,两种方法平均预测准确率(Ts)均为75%。  相似文献   
12.
递推辨识与迭代辨识构成了两类重要的参数估计方法.递推辨识的递推变量与时间有关,因而可以用于在线估计系统参数;迭代辨识的迭代变量是自然数,与客观世界的时间无关,通常用于离线估计系统参数.基于辅助模型辨识思想、多新息辨识理论、递阶辨识原理、耦合辨识概念等辨识方法都可以用递推算法和迭代算法实现.迭代方法渊源很早,如求解矩阵方程Ax=b的雅可比迭代、高斯-赛德尔迭代等.迭代辨识方法主要使用梯度搜索、最小二乘搜索、牛顿搜索原理来实现.为此主要研究了CARMA系统和Box-Jenkins系统的最小二乘迭代辨识方法与梯度迭代辨识方法.这些方法也可推广到其他所有方程误差类系统和输出误差类系统,以及非线性系统.迭代辨识方法通常用于有限量测数据的系统辨识,其收敛性证明是辨识领域极具挑战性的研究课题.  相似文献   
13.
递阶辨识是系统辨识的一个重要分支.递阶辨识原理是在大系统递阶控制的"分解-协调原理"基础上发展起来的,它不仅能够解决参数数目多、维数高、大规模系统辨识算法计算量大的问题,而且能够解决结构复杂的双线性参数系统、多线性参数系统以及非线性系统的辨识问题.首先介绍递阶辨识原理和线性方程组Ax=b的著名雅可比迭代和高斯-赛德尔迭代,给出了线性方程组的迭代方法族;其次将雅可比迭代思想和递阶辨识原理用于研究一般矩阵方程和耦合矩阵方程的递阶梯度迭代求解方法和递阶最小二乘迭代求解方法;再次介绍了方程误差模型的两阶段最小二乘辨识方法(一个简单的递阶辨识方法)和线性回归模型的递阶最小二乘辨识方法;最后研究了类多变量CARMA系统的递阶辨识方法.  相似文献   
14.
耦合辨识是系统辨识的一个重要分支,是新近发展和提炼形成的一种辨识概念,主要用于研究结构复杂的参数耦合线性和非线性多变量系统的辨识问题.辅助模型辨识思想、多新息辨识理论、递阶辨识原理、耦合辨识概念是本文作者提出的一些新的辨识研究思路、理念和方法,分别能够用于研究存在未知过程变量的不可测系统的辨识,能够提高辨识方法的收敛速度和参数估计精度,能够解决结构复杂、大规模多变量系统及参数耦合多变量系统的辨识问题、减小辨识算法的计算量.首先介绍多变量系统耦合辨识概念,在此基础上讨论多变量系统的几种(全)耦合最小二乘辨识方法、(全)耦合随机梯度辨识方法、部分耦合随机梯度辨识方法、部分耦合最小二乘辨识方法等,最后说明耦合辨识方法可推广用于有色噪声干扰多变量系统的辨识,并列出了一些多变量系统模型结构,阐述了耦合辨识概念可以结合辅助模型辨识思想、多新息辨识理论、递阶辨识原理、迭代搜索原理(梯度迭代、最小二乘迭代、牛顿迭代)等来研究线性或非线性多变量系统的辨识问题.  相似文献   
15.
虽然TCAR能够实现短基线三频模糊度单历元解算,但由于电离层延迟及观测噪声等的影响,中长基线三频模糊度快速解算仍然是导航定位的一大难点。本文提出了一种新的无几何无电离层三频模糊度解算方法。该方法通过对伪距观测值赋予不同的权重,辅助宽巷及窄巷消除电离层残差的影响,使宽巷及窄巷求解只受观测噪声的影响;然后通过多历元的平滑获取宽巷及窄巷模糊度值。通过实测BDS三频长基线数据表明,相比经典TCAR算法,该方法可大大改善中长基线模糊度的求解精度,经过数据平滑并验证基本可以实现中长基线模糊度的快速解算。  相似文献   
16.
简单讨论了行列式、矩阵逆和块矩阵逆的计算量;研究了信息向量耦合型多变量系统的子系统递推最小二乘辨识方法,给出了计算量小的联合递推最小二乘辨识算法;研究了部分信息向量耦合型多变量系统的子系统最小二乘辨识算法,提出了计算量小的基于块矩阵求逆的最小二乘辨识算法;给出了部分信息向量耦合型多变量系统的子系统递推最小二乘辨识算法,提出和推导了基于辨识模型分解的递推最小二乘辨识算法,并分别讨论了提出算法的计算量.  相似文献   
17.
郑洪初 《气象》1995,21(7):51-53
年旱涝时间序列是一动态系统。我们采用特殊的CARMA模型即带受控制项的自回归模型对动态系统进行建模。并试图用较少的状态变量来描述系统的宏观行为。观察结果认为:用3个受控变量就可以描述安康市的年旱涝演变规律,并建立了CRA模型。用CAR模型作年旱涝预报能达到较高的精度,特别是大旱、大涝年预报效果最佳。试用表明预报与实况的相对误差为8.7%-12.6%。  相似文献   
18.
讨论了最小二乘迭代辨识算法及其计算效率问题.最小二乘迭代算法由于涉及矩阵求逆运算,为减小计算量,提出了基于块矩阵求逆的最小二乘迭代辨识算法.基于块矩阵求逆的最小二乘迭代辨识算法不是一种新算法,只是从辨识算法的实现方式上降低计算负担,它与最小二乘迭代算法产生相同的参数估计,但计算量小.文中研究了伪线性回归系统、多元伪线性回归系统、多变量伪线性回归系统的最小二乘迭代辨识算法及其基于块矩阵求逆的最小二乘迭代算法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号