首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   89篇
  国内免费   67篇
测绘学   45篇
大气科学   61篇
地球物理   221篇
地质学   89篇
海洋学   176篇
天文学   16篇
综合类   19篇
自然地理   52篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   4篇
  2020年   17篇
  2019年   18篇
  2018年   16篇
  2017年   16篇
  2016年   22篇
  2015年   19篇
  2014年   20篇
  2013年   44篇
  2012年   18篇
  2011年   16篇
  2010年   23篇
  2009年   26篇
  2008年   29篇
  2007年   51篇
  2006年   29篇
  2005年   32篇
  2004年   29篇
  2003年   28篇
  2002年   21篇
  2001年   23篇
  2000年   23篇
  1999年   20篇
  1998年   21篇
  1997年   11篇
  1996年   12篇
  1995年   15篇
  1994年   15篇
  1993年   6篇
  1992年   7篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1982年   1篇
排序方式: 共有679条查询结果,搜索用时 31 毫秒
151.
波浪水槽中非线性浅水波传播特性与模拟   总被引:2,自引:0,他引:2  
通过建立解析解、进行数值模拟和物理实验,研究了波浪水槽中非线性浅水波浪传播特性,给出了数值模拟中对应造波板做正弦运动的二阶入射边界条件。数值模拟采用高阶Boussinesq方程。实验结果、数值结果和解析解进行对比,并讨论了解析解的适用范围、高次谐波的产生及三波相互作用问题。  相似文献   
152.
The resonance phenomenon of fluid motions in the gap between ship section, seabed and vertical quay wall is studied numerically and experimentally. The natural frequency of the fluid motions in the gap is derived. A two-dimensional time-domain coupled numerical model is developed to calculate the non-linear wave forces acting on a ship section against vertical quay in a harbor. The fluid domain is divided into an inner domain and an outer domain. The outer domain is the area between the left side of ship section and the incident boundary, where flow is expressed by Boussinesq equations. The rest area is the inner domain, which is the domain beneath the ship section plus the domain between the right side of ship section and vertical quay wall. The flow in the inner domain is expressed by Newton's Second Law. Matching conditions on the interface between the inner domain and the outer domain are the continuation of volume flux and the equality of pressures. The numerical results are validated by experimental data.  相似文献   
153.
Abstract

Deep-sea mining (DSM) is an advanced technology. This article is focused on the dynamic analysis of a coupled vessel/riser/equipment system of a DSM based on radial basis function (RBF) neural network approximations while considering vessel dynamic positioning (DP) and active heave compensation (AHC). A coupled model including the production support vessel (PSV), lifting riser, and slurry pump is established containing simulated DP and AHC models. Furthermore, dynamic simulations are implemented to obtain the results of the vessel motions, thruster forces, pump motions and riser tensions. Using optimal Latin hypercube sampling, an RBF neural network approximation model is established, the input includes environmental factors and the output includes the dynamic responses of the pump motion and riser tension. Calculations are performed using RBF network approximations instead of a coupled model. The obtained results show that the PSV wave frequency (WF) motions have significant influence on the dynamic responses of the subsea system. Moreover, the current load affects the compensation effect. The RBF network approximation model can be used to reduce the required calculation time.  相似文献   
154.
基于同量阶迭代法,在保留同阶面的前提下,对林建国等(1998a)得到的二阶Boussinesq类方程进行了求解,得到了与其量阶相对应的取立波解,并春与Euler方程的二阶孤立波解进行了比较,结果显示,本文解比传统Boussinesq方程的孤立波解有明显的改善,扩大了孤立的适用范围。  相似文献   
155.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   
156.
研究两个线性最小二乘问题解流形之间的逼近性。所得结果可看作普通最小二乘问题扰动理论的继续。推广了若干已有结论。  相似文献   
157.
Based on the high order nonlinear and dispersive wave equation with a dissipalive term, a numerical model for nonlinear waves is developed. It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/ L0≤ 1. By the application of the completely implicit slagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical solutions and physical models.  相似文献   
158.
The mild-slope equation derived by Berkhoff (1972), has widely been used in the numerical calculation of refraction and diffraction of regular waves. However, it is well known that the random sea waves has a significant effect in the refraction and diffraction problems. In this paper, a new form of time-dependent mild slope equation for irregular waves was derived with Fade approximation and Kubo's time series concept. The equation was simplified using WKB method, and simple and practical irregular mild slope equation was obtained. Results of numerical calculations are compared with those of laboratory experiments.  相似文献   
159.
Numerical calculation of dispersion relation for linear internal waves   总被引:1,自引:0,他引:1  
With the horizontal Coriolis terms included in motion equations and the influence of compressibility of seawater on Brunt-Visl frequency considered, a numerical method of calculating the dispersion relation for linear internal waves, which is an improvement of Cai and Gan (1995), and hence Fliegel and Hunkins (1975), had been set up. For different models (Pacific model, Atlantic model and Arctic model), simulations using the three different methods were compared and the following conclusions were reached:(1) the influence of horizontal Coriolis terms on dispersion relation cannot be neglected and is connected with the direction of the wave celerity, the latitude, and the modes of the wave;(2) the effect of compressibility of seawater in stratification is not an important factor for the dispersion relation of linear internal wave, at least for those three models. With the improved method, the wavefunction curves for the Pacific model had also been built.  相似文献   
160.
For the simulation of the nonlinear wave propagation in coastal areas with complex boundaries,a numerical model is developed in curvilinear coordinates. In the model,the Boussinesq-type equations including the dissipation terms are employed as the governing equations. In the present model,the dependent variables of the transformed equations are the free surface elevation and the utility velocity variables,instead of the usual primitive velocity variables. The introduction of utility velocity variables which...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号