We perform eddy-permitting to eddy-resolving simulations of the Skagerrak/northern North Sea with a terrain-following numerical
ocean model. We demonstrate that realistic representations of freshwater input are not required when the focus is on modelling
mesoscale structures such as meanders and eddies. To arrive at this conclusion, we analyze the results using a recently developed
energy diagnostic scheme to study the sensitivity to realistic representations of the lateral freshwater flux provided to
the area from the Baltic Sea and by the major rivers. The scheme is suitable for analysis of growth of instabilities, and
it has four basic instability processes prominent. We recognize both horizontal and vertical shear instabilities. There are
two processes where average potential energy is converted to eddy kinetic energy, and they are related to the mean gradient
in surface elevation and the mean lateral density gradient, respectively. The latter process is known as frontal instability.
We demonstrate that the change in the eddy kinetic energy field is small, despite the large variations in the hydrographic
properties from experiment to experiment. Moreover, generation of eddy activity appears at the same locations and with approximately
the same strength regardless of actual representations of freshwater input. Furthermore, we find that vertical shear instability
dominates the energy conversion processes in the Norwegian Coastal Current. Finally, we find that the areas off the northwest
coast of Denmark recognized with enhanced eddy kinetic energy level is not caused by instability processes but eddy–eddy interaction
rooted in variations in the sea level. 相似文献
Na lidar observations of SSL during the past 5 years at a mid-latitude location (Wuhan, China, 31°N, 114°E) are reported in this paper. From 26 SSL events detected in about 230 h of observation, an SSL occurrence rate of 1 event/9 h at our location was obtained. This result, combined with that reported by Nagasawa and Abo (Geophys. Res. Lett. 22 (1995) 263) at Tokyo, Japan, reveals that the SSL occurrence can be relatively frequent at some mid-latitude locations. The statistical analyses of main parameters for the 26 SSL events were made, and the results were compared with those previously reported. By examining the corresponding data from a nearby ionosonde, it was found that there was a fairly good correlation between SSL and Es. Of the 18 pairs of SSL and Es events checked, 15 of SSL were accompanied by Es, and 8 pairs of them were correlated within 1 h in time and within 5 km in altitude. From the analyses of observed perturbations during SSL development, the role of dynamic processes of atmosphere in the SSL formations were emphasized. 相似文献
A fluorescent sand-tracer experiment was performed at Comporta Beach (Portugal) with the aim of acquiring longshore sediment transport data on a reflective beach, the optimization of field and laboratory tracer procedures and the improvement of the conceptual model used to support tracer data interpretation.
The field experiment was performed on a mesotidal reflective beach face in low energetic conditions (significant wave height between 0.4 and 0.5 m). Two different colour tracers (orange and blue) were injected at low tide and sampled in the two subsequent low tides using a high resolution 3D grid extending 450 m alongshore and 30 m cross-shore. Marked sand was detected using an automatic digital image processing system developed in the scope of the present experiment.
Results for the two colour tracers show a remarkable coherence, with high recovery rates attesting data validity. Sand tracer displayed a high advection velocity, but with distinct vertical distribution patterns in the two tides: in the first tide there was a clear decrease in tracer advection velocity with depth while in the second tide, the tracer exhibited an almost uniform vertical velocity distribution. This differing behaviour suggests that, in the first tide, the tracer had not reached equilibrium within the transport system, pointing to a considerable time lag between injection and complete mixing. This issue has important implications for the interpretation of tracer data, indicating that short term tracer experiments tend to overestimate transport rates. In this work, therefore, longshore estimates were based on tracer results obtained during the second tide.
The estimated total longshore transport rate at Comporta Beach was 2 × 10− 3 m3/s, more than four times larger than predicted using standard empirical longshore formulas. This discrepancy, which results from the unusually large active moving layer observed during the experiment, confirms the idea that most common longshore transport equations under-estimate total sediment transport in plunging/surging waves. 相似文献
We investigated the water structure and nutrient distribution in the Suruga Bay from April 2000 to July 2002, especially the Offshore Water, which occupies a large part of the bay. The maximum salinity in the upper 200 m varied between 34.49 and 34.71, indicating a temporal change in the influence of Kuroshio Water on the Offshore Water. Seasonal variation in nutrient concentrations was largest from surface to 50 m. On the other hand, the variance in nutrient concentrations within each season was largest in the subsurface layer of 100–300 m in spring, summer and fall. In the Offshore Water, the change of nutrients was negatively correlated with that of salinity in each season. This suggests that an increasing intrusion of saline water brings about a lower nutrient concentration in the Offshore Water. Likewise, negative correlations were observed between the change of the maximum salinity and chlorophyll a (Δ [chl.a-int])/nutrients integrated in the upper 200 m. Δ[chl.a-int] was significantly correlated with the changes of nitrate and phosphorus, but there were no significant correlations between Δ[chl.a-int] and the change of silicate. These results suggest that the concentrations of chlorophyll a and nutrients in the Offshore Water were decreased due to the increasing intrusion of Kuroshio Water. The Offshore Water is likely to be related to the regulation of primary production by nitrate. 相似文献
A series of experiments were done to reveal the overtopping breaching process of non-cohesive and cohesive levees in a U-bend flume. The flood hydrograph and breaching geometry were measured and analyzed in detail. The results show that the levee breaching processes can be briefly divided into four stages: slope erosion, longitudinal headward gully-cutting, lateral erosion, and relative stabilization. For non-cohesive levees, non-symmetrical lateral development of the breach occurs throughout the four stages, and the final non-symmetrical coefficient is approximately 2.2–2.6. Larger flow discharge or higher water level can accelerate the breaching process, while coarser sands tend to accelerate the process initially but depress the process at the end. The fluvial erosion rate of a non-cohesive breach shows a power-function relation with the excess wall shear stress. For cohesive levees, a plateau forms in the breach partially blocking the flow in the first two stages. The breach flow is approximately perpendicular to the levee body, and, thus, the erosion rates of the two breach sides are almost the same. Non-symmetrical lateral development mainly occurs in the third stage when the deep gully forms. The final non-symmetrical coefficient is approximately 2.7–3.3. It is expected that these findings can provide a valuable experimental dataset and a theoretical basis for breach closure and flood alleviation. 相似文献