首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7247篇
  免费   1244篇
  国内免费   1184篇
测绘学   200篇
大气科学   636篇
地球物理   2595篇
地质学   3840篇
海洋学   883篇
天文学   51篇
综合类   329篇
自然地理   1141篇
  2024年   38篇
  2023年   114篇
  2022年   198篇
  2021年   272篇
  2020年   287篇
  2019年   280篇
  2018年   258篇
  2017年   292篇
  2016年   277篇
  2015年   292篇
  2014年   426篇
  2013年   560篇
  2012年   361篇
  2011年   415篇
  2010年   388篇
  2009年   460篇
  2008年   527篇
  2007年   451篇
  2006年   478篇
  2005年   352篇
  2004年   324篇
  2003年   301篇
  2002年   287篇
  2001年   260篇
  2000年   236篇
  1999年   236篇
  1998年   201篇
  1997年   179篇
  1996年   151篇
  1995年   125篇
  1994年   111篇
  1993年   111篇
  1992年   95篇
  1991年   70篇
  1990年   69篇
  1989年   48篇
  1988年   43篇
  1987年   19篇
  1986年   14篇
  1985年   11篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1978年   16篇
  1977年   5篇
  1976年   1篇
  1972年   1篇
  1954年   3篇
排序方式: 共有9675条查询结果,搜索用时 15 毫秒
831.
Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.  相似文献   
832.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
833.
Drainage blankets (DB) are used for leachate recirculation in bioreactor landfills and consist of highly permeable material placed over a large area of the landfill with the leachate injection pipe embedded in the material at specified locations. DBs are generally installed at different depth levels during the waste filling operations. Very limited information is reported on performance of DBs, and that which exists is based on a small number of field monitoring and modeling studies. A rational method for the design of landfills using DBs has not been developed. This study performs a parametric analysis based on a validated two-phase flow model and presents design charts to guide the design of DBs for given hydraulic properties of MSW, the leachate injection rate and the dimensions and locations of the DB as measured from the leachate collection and recirculation system (LCRS) located at the bottom of the landfill cell. Numerical simulations were performed for the two established MSW conditions: homogeneous–isotropic and heterogeneous–anisotropic waste. The optimal levels of leachate saturation, wetted width, wetted area and developed pore water and pore gas pressures were determined, and design charts using the normalized parameters were developed. An example is presented on the use of design charts for typical field application.  相似文献   
834.
云南保山金鸡剖面丁家寨组及其古水温问题的讨论   总被引:1,自引:0,他引:1  
保山金鸡剖面丁家寨组下部含砾层的双层结构特征与不同的地质作用有关:下部砾岩层为滨海相砾岩;上部角砾状灰岩由碎屑流产生。所产遗迹化石指示滨海相环境。根据保山地区丁家寨组的颗粒成分、胶结物及地球化学特征,对丁家寨组冷温水成因的观点提出了质疑  相似文献   
835.
Based on discussion about the features of karst groundwater resources distribution of karst water system in Heilongdong Springs and causes of spring groups cutoff and according to current karst groundwater resources and exploitation distribution conditions of coal resources, this paper put forward the measures for protecting groundwater resources, i.e. intensifying plugging of underground coal mine gushing water points, grouting in advance to reinforce the small faults and weak lower confining bed of coal seam and leave sufficient waterproof coal pillars based on adjustment of the water sources for centralized water supply and water supplying and draining and countermeasures of improving use ratio of mine water and replacement of direct exploitation to realize resuming flow of spring groups and sustainable development of groundwater resources and exploitation of coal resources  相似文献   
836.
A. Guy Plint 《Sedimentology》2014,61(3):609-647
Determining sediment transport direction in ancient mudrocks is difficult. In order to determine both process and direction of mud transport, a portion of a well‐mapped Cretaceous delta system was studied. Oriented samples from outcrop represent prodelta environments from ca 10 to 120 km offshore. Oriented thin sections of mudstone, cut in three planes, allowed bed microstructure and palaeoflow directions to be determined. Clay mineral platelets are packaged in equant, face‐face aggregates 2 to 5 μm in diameter that have a random orientation; these aggregates may have formed through flocculation in fluid mud. Cohesive mud was eroded by storms to make intraclastic aggregates 5 to 20 μm in diameter. Mudstone beds are millimetre‐scale, and four microfacies are recognized: Well‐sorted siltstone forms millimetre‐scale combined‐flow ripples overlying scoured surfaces; deposition was from turbulent combined flow. Silt‐streaked claystone comprises parallel, sub‐millimetre laminae of siliceous silt and clay aggregates sorted by shear in the boundary layer beneath a wave‐supported gravity flow of fluid mud. Silty claystone comprises fine siliceous silt grains floating in a matrix of clay and was deposited by vertical settling as fluid mud gelled under minimal current shear. Homogeneous clay‐rich mudstone has little silt and may represent late‐stage settling of fluid mud, or settling from wave‐dissipated fluid mud. It is difficult or impossible to correlate millimetre‐scale beds between thin sections from the same sample, spaced only ca 20 mm apart, due to lateral facies change and localized scour and fill. Combined‐flow ripples in siltstone show strong preferred migration directly down the regional prodelta slope, estimated at ca 1 : 1000. Ripple migration was effected by drag exerted by an overlying layer of downslope‐flowing, wave‐supported fluid mud. In the upper part of the studied section, centimetre‐scale interbeds of very fine to fine‐grained sandstone show wave ripple crests trending shore normal, whereas combined‐flow ripples migrated obliquely alongshore and offshore. Storm winds blowing from the north‐east drove shore‐oblique geostrophic sand transport whereas simultaneously, wave‐supported flows of fluid mud travelled downslope under the influence of gravity. Effective wave base for sand, estimated at ca 40 m, intersected the prodelta surface ca 80 km offshore whereas wave base for mud was at ca 70 m and lay ca 120 km offshore. Small‐scale bioturbation of mud beds co‐occurs with interbedded sandstone but stratigraphically lower, sand‐free mudstone has few or no signs of benthic fauna. It is likely that a combination of soupground substrate, frequent storm emplacement of fluid mud, low nutrient availability and possibly reduced bottom‐water oxygen content collectively inhibited benthic fauna in the distal prodelta.  相似文献   
837.
薛亚东  刘忠强  吴坚 《岩土力学》2014,35(Z2):587-592
通过野外崩积混合体结构特征分析,考虑原样级配,开展对崩积混合体重塑样的室内大尺度直剪试验研究,结合PFC2D颗粒离散元仿真试验,分析了不同含石量情况下崩积混合体变形与强度变化规律及内在机理。将数值试验的成果与室内试验结果进行对比分析。结果表明,随着含石量的增加,崩积混合体的应变硬化效应显著。低法向应力下崩积混合体表现为剪胀,高法向应力下则表现为剪缩;当含石量低于40%时,崩积混合体的力学性质由土体控制,超过80%以后,其力学性质基本上完全由块石控制。  相似文献   
838.
Mud sand flow is a kind of solid-liquid two-phase flow formed in collapsing hill and gully basin during rainfall. It is the main way to export erosion product. The discrimination of its fluid type is one of the collapsing hill and gully control theoretical basis. This paper analyzed the basic characteristics of mud sand flow like grain size and so on through fieldwork and sampling. The results show that the density of mud sand flow is between 1.16~1.60 t/m3 and the solids content is between 257.03~960.55 kg/m3, both of which decrease from the upper to the lower channel. The slurry of mud sand flow is composed mainly of silt and clay. As the density increases, the particle size distribution curve transforms from a single peak to the bimodal distribution similar to the weathering crust with no sorting, and the grain size of mud sand flow becomes coarser which shows a well positive linear correlation between the sediment median particle diameter and density of mud sand flow. The comparison during mud sand flow, hyperconcentrated flow and debris flow shows that collapsing hill and gully mud sand flow, which belongs to an intermediate class between hyperconcentrated flow and debris flow, has a closer link with debris flow. Therefore, mud sand flow can be considered as a sub-class of generalized debris flow that may be called as collapsing hill and gully type debris flow.  相似文献   
839.
Normal faults on Malta were studied to analyse fault propagation and evolution in different carbonate facies. Deformation of carbonate facies is controlled by strength, particle size and pore structure. Different deformation styles influence the damage characteristics surrounding faults, and therefore the fault zone architecture. The carbonates were divided into grain- and micrite-dominated carbonate lithofacies. Stronger grain-dominated carbonates show localised deformation, whereas weaker micrite-dominated carbonates show distributed deformation. The weaker micrite-dominated carbonates overlie stronger grain-dominated carbonates, creating a mechanical stratigraphy. A different architecture of damage, the ‘Fracture Splay Zone’ (FSZ), is produced within micrite-dominated carbonates due to this mechanical stratigraphy. Strain accumulates at the point of juxtaposition between the stronger grain-dominated carbonates in the footwall block and the weaker micrite-dominated carbonates in the hanging wall block. New slip surfaces nucleate and grow from these points, developing an asymmetric fault damage zone segment. The development of more slip surfaces within a single fault zone forms a zone of intense deformation, bound between two slip surfaces within the micrite-dominated carbonate lithofacies (i.e., the FSZ). Rather than localisation onto a single slip surface, allowing formation of a continuous fault core, the deformation will be dispersed along several slip surfaces. The dispersed deformation can create a highly permeable zone, rather than a baffle/seal, in the micrite-dominated carbonate lithofacies. The formation of a Fracture Splay Zone will therefore affect the sealing potential of the fault zone. The FSZ, by contrast, is not observed in the majority of the grain-dominated carbonates.  相似文献   
840.
Unlike micropores where water moves upward or downward based on hydraulic gradient, in macropores, water flows predominantly downward due to the gravity. Therefore, models based on capillary flow are not capable of simulating macropore flow. There are attempts to model the macropore flow using two domains, one for capillary flow and another one for macropores. These models use Richard’s equation for capillary flow and Poiseuille’s law for macropores in which the macropore is approximated to be cylindrical or planar. This study quantifies the magnitudes of the errors induced by this assumption. Influence of macropore shapes and tortuosity was quantified by using a 3D Lattice Boltzmann model, which is capable of simulating fluid flow in micropores as well as macropores of cracked clays. Artificial macropores of constant sectional area and volume, but different shapes were generated in 3D and the influence of macropore shapes, shape related parameters, and tortuosity were systematically investigated. Macropore flow rate decreases with different shapes compared to cylindrical macropores and increase in aspect ratio of sectional shape leads to decrease in macropore flow rate. The maximum effect of bends/turnings along the tortuous macropore was about 25% on overall decrease of flow rate due to tortuosity. However, more detailed study is required on the influence of bends on macropore flow rate. The macropore flow rate reduces by about 70% for tortuosity of 1.41. A prediction equation is verified to predict the flow rate of different shapes and tortuous macropores based on straight cylindrical macropore using aspect ratio and tortuosity factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号