全文获取类型
收费全文 | 2763篇 |
免费 | 398篇 |
国内免费 | 419篇 |
专业分类
测绘学 | 1076篇 |
大气科学 | 401篇 |
地球物理 | 410篇 |
地质学 | 944篇 |
海洋学 | 341篇 |
天文学 | 19篇 |
综合类 | 247篇 |
自然地理 | 142篇 |
出版年
2024年 | 89篇 |
2023年 | 255篇 |
2022年 | 268篇 |
2021年 | 291篇 |
2020年 | 161篇 |
2019年 | 191篇 |
2018年 | 104篇 |
2017年 | 88篇 |
2016年 | 82篇 |
2015年 | 83篇 |
2014年 | 119篇 |
2013年 | 104篇 |
2012年 | 127篇 |
2011年 | 118篇 |
2010年 | 93篇 |
2009年 | 152篇 |
2008年 | 154篇 |
2007年 | 141篇 |
2006年 | 111篇 |
2005年 | 139篇 |
2004年 | 98篇 |
2003年 | 82篇 |
2002年 | 95篇 |
2001年 | 64篇 |
2000年 | 68篇 |
1999年 | 57篇 |
1998年 | 43篇 |
1997年 | 42篇 |
1996年 | 47篇 |
1995年 | 50篇 |
1994年 | 50篇 |
1993年 | 10篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有3580条查询结果,搜索用时 15 毫秒
941.
针对目前基于机器学习的PM2.5预报模型无法充分利用研究区域内其他相关站点的数据问题,该文提出了一种区域时空点数据的表示方法,并在此基础上提出了基于卷积神经网络的PM2.5预报模型。该模型利用了区域内多站点的历史PM2.5实测数据以及相应的气象预报数据,对区域内任一站点PM2.5浓度进行预报。实验结果显示,该模型在京津冀区域内能对未来至少3d内的PM2.5浓度进行较高精度的预报。与基于单站点的前馈神经网络预报结果对比表明,对区域整体污染及气象状况建模的卷积神经网络模型预报精度更高。该模型对区域内所有站点的预测结果与地面实测值的分布基本一致,表明了该模型具有对区域内PM2.5浓度进行时空预报的能力。 相似文献
942.
通过评估IPCC第四次评估公开发布的22个全球气候模式对长江流域降水和气温的模拟性能,选取了BC-CR-BCM2.0等7个气候模式,利用这些GCM s在A1B、A2和B1三种典型排放情景下的未来气温和降水预测结果,结合BP神经网络模型,在对模型验证效果良好的基础上,预测未来气候变化下长江流域径流变化趋势.结果表明,长江流域未来年平均径流量呈减少趋势,宜昌水文站以枯水年减少为主,未来年平均流量比历史年平均流量减少了520 m3/s;大通水文站则以平水年减少为主,比历史年平均流量减少了250 m3/s,水量的减少对南水北调东中线的调水规模和调配、管理提出了较大的挑战.长江流域多年平均月流量增加将主要发生在1~6月,而7~12月将以减少趋势为主.宜昌站和大通站的1~6月份平均增加幅度分别为29.6%和13.8%,7~12月份的平均减少幅度分别为-18.2%和-11.0%,宜昌站的变幅要高于大通站.宜昌站汛期呈减少趋势,平均为-8.5%,非汛期略有增加.大通站变化趋势与宜昌站相反,汛期呈增加趋势,平均为2.3%,非汛期略有减少. 相似文献
943.
基于GIS和神经网络的森林植被分类 总被引:3,自引:0,他引:3
本文综述了国际遥感分类研究,使用Landsat7 ETM+遥感数据和地理辅助数据,应用BP神经网络方法,将莽汉山林场作为研究区进行了遥感影像的分类研究。比较了BP神经网络分类与最大似然、简单和复杂非监督分类法之间的类型与数量精度。BP神经网络分类的总类型精度是70.5%,总数量精度为84.65%,KAPPA系数是0.6455。结果说明BP神经网络的分类质量优于其他方法,其总的类型精度与其他三种分类方法相比分别增加了10.5%、32%和33%,总的质量精度增加了5.3%。因此,辅以地理参考数据的BP神经网络分类可以作为一种有效的分类方法。 相似文献
944.
为了提高煤层底板突水预测的准确性,建立了基于卷积神经网络的煤层底板突水预测模型。通过综合分析,确定了15个影响煤层底板突水的因素,将这些影响因素进行拼接组合,运用建立的深度计算结构模型对影响因素及其相互联系进行特征提取。用已知的115组数据对模型进行学习训练,并进行了预测。为验证模型的准确性,利用相同的数据对BP神经网络模型和LeNet-5模型进行训练,将建立的模型与BP神经网络模型和LeNet-5模型进行对比。结果表明:该模型通过加深模型的计算深度,综合考虑了影响底板突水因素间的相互联系,提高了突水预测准确性。基于卷积神经网络构建的模型可以对煤层底板突水进行预测,并且准确率相对较高。 相似文献
945.
塔里木盆地塔河油田奥陶系生物扰动碳酸盐岩储集层非常发育,但利用常规测井数据识别生物扰动储集层发育段和准确预测孔隙度难度较大。本文在对研究区16口取芯井奥陶系岩芯上生物扰动区域扰动等级划分的基础上,通过岩性标定测井,优选常规测井参数,基于BP神经网络模型分别建立了适合研究区生物扰动碳酸盐岩储集层识别和孔隙度预测的模型,并对建立的模型进行了有效性检验。结果表明:① 选择自然电位、自然伽马、井径、深侧向电阻率、浅侧向电阻率、补偿中子和密度等常规测井数据作为生物扰动碳酸盐岩储集层识别模型输入层的参数值,生物扰动指数(Bioturbation Index, BI)作为输出结果;选取rprop、sigmoid symmetric和sigmoid stepwise函数分别作为训练函数、隐含层和输出层的激活函数,建立节点数为3、层数为3的神经网络识别模型,识别效果好,适用于研究区奥陶系生物扰动碳酸盐岩储集层的识别。② 选择自然电位、自然伽马、井径、声波、补偿中子和密度值等常规测井数据作为输入层的参数值,对应深度上岩芯柱塞孔隙度测试结果和利用孔隙度样品检验模型计算得出的孔隙度结果作为输出结果,选取incremental、gaussian和sigmoid分别作为训练函数、隐含层和输出层的激活函数,建立节点数为4,层数为3的生物扰动碳酸盐岩储集层孔隙度预测模型,预测效果良好,适用于研究区奥陶系生物扰动储集层孔隙度的预测。该研究对定量表征研究区生物扰动储层特性、储量估算、油藏描述和储层地质建模等具有重要的借鉴意义。 相似文献
946.
静态神经网络模型用于在线时间序列的预报时具有局限性,即网络的泛化能力有限,且模型不能不断地适应新增样本的变化。如果每增加一个样本对神经网络重新训练,需要大量的计算时间。针对该问题,提出了动态神经网络预报模型。在获得新增样本数据之后,通过比较预报值与实际值之差的绝对值是否大于ε敏感因子,决定模型是否需要修正。为了降低模型修正的计算时间,提出了在线动态修正方法,实现了增加样本而矩阵阶数不增加,且避免了矩阵求逆运算,理论上可以提高计算效率。通过实例表明,该方法在计算时间和预报精度两个方面都具有一定优势,可应用于在线实时变形预报及相关领域。 相似文献
947.
建立精确预测参考作物蒸散量(ET0)的计算模型对区域水资源规划和灌溉调度设计具有重要意义。聚焦评估多元自适应回归样条模型(multivariate adaptive regression splines,MARS)计算每日ET0的性能。首先,将Penman-Monteith方程计算的ET0作为标准值;然后,利用中国新疆维吾尔自治区伊犁哈萨克自治州伊宁站1996—2015年逐日气象数据,建立14种不同气象参数组合下的MARS模型并计算ET0;最后,将结果与广义回归神经网络(general regression neural network,GRNN)、支持向量机(support vector machine,SVM)及基于温度、传质、辐射和气象参数的10个经验方程进行比较。结果表明,MARS、GRNN和SVM计算ET0的精度均高于经验方程,整体上MARS性能最好、精度最高,而SVM略优于GRNN。 相似文献
948.
949.
干涉图滤波是合成孔径雷达数据处理的关键,引入卷积神经网络(convolutional neural networks,CNN)进行干涉图去噪。首先,采用自编码器结构进行非监督学习,将干涉图去除局部地形坡度相位,所得残余噪声作为模型输入;然后将模型输出结果与去除的局部地形坡度相位相加,生成滤波结果。利用航天飞机成像雷达数据和哨兵一号A(Sentinel-1A)卫星数据,通过与Goldstein滤波器、均值滤波器、Lee滤波、Frost滤波、改进的去噪卷积神经网络(denoising convolutional neural network,DnCNN)进行对比实验,结果表明,该方法对干涉图相位质量有很大的改善,不仅能够较大程度地抑制噪声,而且能够更多地恢复出图像细节,保持干涉条纹边缘连续性。 相似文献
950.
溢油已是当前海洋生态环境破坏的主要因素之一,因此对海洋溢油的检测分析是当前海洋环境保护的一个重要课题。传统的溢油提取仅仅是单独依靠光学影像的光谱信息或者合成孔径雷达(SAR)影像的后向散射系数信息进行提取,这会造成很多同谱异物或者粗糙度相近似的地物错分,因此除了利用传统的影像信息以外,还需结合影像的纹理信息,从而提高溢油提取的精度,减少错分地物的数量。选用2006年渤海地区的三景同轨SAR影像作为数据基础,应用基于灰度共生矩阵的方法对其进行纹理分析。该方法可以很好地对图像区域和表面进行感知并能够从像元的灰度相关性上对纹理特征进行详细描述,因此适合于SAR影像的海洋溢油检测。在纹理分析的过程中有很多的参数需要选择,参数选择的好坏将直接影响最终提取结果的精度。通过对纹理分析过程中的参数进行讨论、实验、选择与验证,最终确定了基于灰度共生矩阵纹理分析中各参数的值,并选择了局部平稳、非相似性、对比度、变化量4个特征量作为溢油提取的纹理特征统计量。将纹理特征与SAR自身的后向散射系数相结合,通过神经网络分类法对其进行分类,并计算出分类精度为80.65%,分类效果良好。由此说明了将影像的传统信息与纹理信息相结合进行溢油提取是一种可行而有效的方法,同时也为后续的海洋溢油检测工作奠定了一定的基础。 相似文献