全文获取类型
收费全文 | 2763篇 |
免费 | 398篇 |
国内免费 | 419篇 |
专业分类
测绘学 | 1076篇 |
大气科学 | 401篇 |
地球物理 | 410篇 |
地质学 | 944篇 |
海洋学 | 341篇 |
天文学 | 19篇 |
综合类 | 247篇 |
自然地理 | 142篇 |
出版年
2024年 | 89篇 |
2023年 | 255篇 |
2022年 | 268篇 |
2021年 | 291篇 |
2020年 | 161篇 |
2019年 | 191篇 |
2018年 | 104篇 |
2017年 | 88篇 |
2016年 | 82篇 |
2015年 | 83篇 |
2014年 | 119篇 |
2013年 | 104篇 |
2012年 | 127篇 |
2011年 | 118篇 |
2010年 | 93篇 |
2009年 | 152篇 |
2008年 | 154篇 |
2007年 | 141篇 |
2006年 | 111篇 |
2005年 | 139篇 |
2004年 | 98篇 |
2003年 | 82篇 |
2002年 | 95篇 |
2001年 | 64篇 |
2000年 | 68篇 |
1999年 | 57篇 |
1998年 | 43篇 |
1997年 | 42篇 |
1996年 | 47篇 |
1995年 | 50篇 |
1994年 | 50篇 |
1993年 | 10篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有3580条查询结果,搜索用时 31 毫秒
11.
12.
BP神经网络用于水下地形适配区划分的方法研究 总被引:1,自引:0,他引:1
为确保背景场中最优适配航线设计的正确性以及水下地形匹配导航的可靠性,提出了一种基于BP神经网络的背景场适配/误配区自动识别和划分方法,该方法通过分析地形背景场特征参量显著性和主成分、构建BP神经网络、建立输入地形特征参量与匹配性能的映射关系,最终实现了地形背景场误配/适配区的自动识别和划分。试验验证了本方法的有效性。 相似文献
13.
王晞 《测绘与空间地理信息》2013,(10):129-132
根据房地产估价的特点将人工神经网络引入到房地产价格评估领域,创建了基于神经网络的房地产估价模型,在对训练样本验证结果分析的基础上,对两种神经网络估价模型进行了对比分析,指出了两种网络各自的优缺点以及改进措施。 相似文献
14.
15.
16.
室内三维点云数据精准语义分割是实现深层次室内空间应用的基础。针对现有三维点云数据语义分割方法存在目标不完整和不一致的问题,本文提出了一种几何特征与深度神经网络联合优化的室内三维点云语义分割方法。该方法首先利用深度学习实现室内结构信息语义标签的初步提取,然后利用几何与颜色特征的点云分割方法对原始数据进行精确分割,最后利用概率模型将深度学习语义分割结果与几何分割结果进行交叉融合,实现语义分割结果的联合优化。基于开放数据集对本文提出的分割方法进行了精度和有效性验证,分别采用室内场景简单到复杂的三组室内点云数据进行了测试,试验结果表明,本文提出的方法能够有效提升室内三维点云语义分割精度。 相似文献
17.
针对点云分类中提取单个点自身特征所需的邻域尺寸选择,以及低层次特征设计烦琐且表达地物属性能力较弱等问题,本文提出了一种自适应选择单点最优邻域尺寸及学习泛化能力更强的深层次特征的三维点云分类方法。首先基于自适应最优邻域尺寸选择获得每个点的最优局部邻域信息,继而基于局部邻域信息提取点云低层次特征;然后设计一种以待分类点低层次特征为输入的卷积神经网络模型,学习能反映目标地物内在属性的深层次特征并实现分类;最后采用拓普康公司三维点云数据集进行试验,该数据集通过一个配备TOPCON GLS-2200三维激光扫描仪的移动平台获得。试验结果表明,本文方法分类的总体精度达90.48%,优于文中其他点云分类方法。 相似文献
18.
近几十年来,基于遥感影像进行水深反演一直是国内外学者研究的热点。本文使用WorldView-3高分辨率卫星影像,结合卫星测高数据,以中国海南岛附近的蜈支洲岛及其附近海域为主要研究区域,在进行数据预处理、底质分类之后,分别通过多元线性回归模型、Stumpf对数比值模型和BP神经网络集中对岛屿周围0~20 m水域的水深进行反演和结果分析。结果证明,对这3种模型而言,在进行底质分类之后精度都会明显提升。其中,BP神经网络反演水深精度最高(均方根误差范围为0.2~0.7 m),多元线性回归模型次之(均方根误差范围为0.3~0.8 m),对数比值模型精度最低(均方根误差范围为0.6~1.1 m)。 相似文献
19.
20.
针对基于位置指纹的Wi-Fi室内定位方法定位精度低的问题,本文提出了一种融合卷积神经网络(CNN)和胶囊网络(CapsNet)的Wi-Fi室内定位算法模型,记为CNN-CapsNet。首先将采集的RSSI时间序列信息,生成位置指纹图像数据集;然后通过由卷积层和池化层构成的CNN初级特征提取器,完成定位图像到初级特征图的转换;最后将初级特征图输入到CapsNet中,获得最终的分类结果。试验结果表明,在不同的向量维度,迭代次数等参数下,该模型的准确率高达99.99%,损失函数值低至0.009 91,优于其他的传统定位方法。 相似文献