首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13405篇
  免费   2581篇
  国内免费   2554篇
测绘学   600篇
大气科学   958篇
地球物理   3834篇
地质学   6357篇
海洋学   1875篇
天文学   2018篇
综合类   689篇
自然地理   2209篇
  2024年   42篇
  2023年   150篇
  2022年   387篇
  2021年   426篇
  2020年   473篇
  2019年   578篇
  2018年   475篇
  2017年   482篇
  2016年   508篇
  2015年   556篇
  2014年   661篇
  2013年   613篇
  2012年   725篇
  2011年   786篇
  2010年   638篇
  2009年   943篇
  2008年   870篇
  2007年   939篇
  2006年   929篇
  2005年   806篇
  2004年   808篇
  2003年   809篇
  2002年   631篇
  2001年   597篇
  2000年   569篇
  1999年   500篇
  1998年   552篇
  1997年   320篇
  1996年   297篇
  1995年   287篇
  1994年   255篇
  1993年   217篇
  1992年   188篇
  1991年   114篇
  1990年   77篇
  1989年   85篇
  1988年   56篇
  1987年   62篇
  1986年   39篇
  1985年   20篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   10篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The Matt Wilson structure is a circular 5.5 km-diameter structure in Early Mesoproterozoic or Neoproterozoic rocks of the Victoria Basin, Northern Territory. It lies in regionally horizontal to gently dipping Wondoan Hill and Stubb Formations (Tijunna Group) and Jasper Gorge Sandstone (Auvergne Group). An outer circumferential syncline with dips of 5?–?40° in the limbs surrounds an intermediate zone with faulted sandstone displaying horizontal to low dips, and a central steeply dipping zone about 1.5 km across. Several thrust faults in the outer syncline appear to indicate outward-directed forces. The central zone, marked by steeply dipping to overturned Tijunna Group and possibly Bullita Group sandstone and mudstone, indicates uplift of at least 300 m. The rocks are intensely fractured with some brecciation, and contain numerous planar to subtly undulating surfaces displaying striae which resemble shatter cleavage. Thin-sections of sandstone from the central area show zones of intense microbrecciation and irregular and planar fractures in quartz, but no melt-rocks have been identified. The planar fractures occur in multiple intersecting parallel sets typical of relatively low-level (5?–?10 GPa) shock-pressure effects. Alternative mechanisms, i.e. igneous intrusion, carbonate collapse, diapirism and regional deformation processes, have been discounted. The circular nature, central uplift, faulting, shatter features and planar fractures are all consistent with an impact origin. The Matt Wilson structure is most likely a deeply eroded impact structure in which the more highly shocked rocks of the original crater floor have been removed by erosion. Estimates of the age of the Auvergne and Tijunna Groups range from Early Mesoproterozoic (which we favour) to Late Neoproterozoic. Early Cambrian Antrim Plateau Volcanics near the impact structure show no signs of impact effects, allowing the age of impact to be constrained between Early Mesoproterozoic and Early Cambrian. The presence of widespread soft-sediment deformation features, apparently confined to a single horizon in the Saddle Creek Formation some 700?–?1000 m stratigraphically higher in the Auvergne Group than the rocks at the impact site, and apparently increasing in thickness towards the Matt Wilson structure, lead us to speculate that this probable event horizon is related to the impact event: if correct the impact occurred during deposition of the Saddle Creek Formation.  相似文献   
942.
In order to study the origin of the spatial structure of the Northern Hemisphere Annular Mode (NAM),a linear stochastic model is constructed empirically from the output of a GCM run.Optimal stochastic forcing in terms of the maximum variance contribution,which may be potentially related to the maintenance of the NAM,is investigated.Theoretical analysis on the dominant non-modal response to the stochastic forcing shows that this dominance is jointly decided by the properties of forcing and the non-modal grow...  相似文献   
943.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   
944.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   
945.
Stress mapping is a numerical modelling technique used to determine the distribution and relative magnitude of stress during deformation in a mineralised terrane. It is based on the general principle that fluid flow in the Earth's crust is primarily related to pressure gradients. It is best applied to epigenetic hydrothermal mineral deposits, where fluid flow and fluid flux are enhanced in dilational sections of structures and in sites of enhanced rock permeability due to high fracture density. These are defined by sites of low minimum principal stress (σ3). Most stress mapping is carried out in two dimensions in plan view using geological maps. This is suitable for terranes with steeply dipping lithostratigraphy and structures in which the distribution of mineral deposits is largely controlled by fault structures portrayed on the maps. However, for terranes with gently dipping sequences and structures, and for situations where deposits are sited in and near the hinges of complex fold structures, stress mapping in cross‐section is preferable. The effectiveness of stress mapping is maximised if mineralisation was late in the evolutionary history of the host terrane, and hence the structural geometry of the terrane and contained deposits were essentially that expressed today. The orientation of syn‐mineralisation far‐field stresses must also be inferred. Two examples of orogenic gold deposits, which meet the above criteria, are used to illustrate the potential of stress mapping in cross‐section. Sunrise Dam, located in the Archaean Yilgarn Craton, is a lode‐gold deposit sited in a thrust‐fold belt. Stress mapping illustrates the heterogeneity of stress distribution in the complex structural geometry of the deposit, and predicts the preferential siting of ore zones around the intersections of more steeply dipping, linking thrusts and banded iron‐formation units, and below the controlling more gently dipping basal thrust, the Sunrise Shear. The Howley Anticline in the Pine Creek block hosts several Palaeoproterozoic gold deposits, sited in complex anticlinal structures in greywacke sequences. Stress mapping indicates that gold ores should develop in the hinge zones of symmetrical anticlines, in the hinge zones and more steeply dipping to overturned limbs of asymmetric anticlines, and in and around thrusts in both anticlines and parasitic synclines. The strong correlation between the predictions of the stress mapping, based on the distribution of low σ3, and the location of gold ores emphasises the potential of stress mapping in cross‐section, not only as an exploration tool for the discovery of additional resources or deposits, but also as a test of geological models. Knowledge of the potential siting of gold ores and their probable orientations also provides a guide to drilling strategies in both mine‐ and regional‐scale exploration.  相似文献   
946.
There is an ongoing debate about the tectonic evolution of southeast Australia, particularly about the causes and nature of its accretion to a much older Precambrian core to the west. Seismic imaging of the crust can provide useful clues to address this issue. Seismic tomography imaging is a powerful tool often employed to map elastic properties of the Earth's lithosphere, but in most cases does not constrain well the depth of discontinuities such as the Mohorovi?i? (Moho). In this study, an alternative imaging technique known as receiver function (RF) has been employed for seismic stations near Canberra in the Lachlan Orogen to investigate: (i) the shear-wave-velocity profile in the crust and uppermost mantle, (ii) variations in the Moho depth beneath the Lachlan Orogen, and (iii) the nature of the transition between the crust and mantle. A number of styles of RF analyses were conducted: H-K stacking to obtain the best compressional–shear velocity (V P /V S) ratio and crustal thickness; nonlinear inversion for the shear-wave-velocity structure and inversion of the observed variations in RFs with back-azimuth to investigate potential dipping of the crustal layers and anisotropy. The thick crust (up to 48 km) and the mostly intermediate nature of the crust?mantle transition in the Lachlan Orogen could be due to the presence of underplating at the base of the crust, and possibly to the existing thick piles of Ordovician mafic rocks present in the mid and lower crust. Results from numerical modelling of RFs at three seismic stations (CAN, CNB and YNG) suggest that the observed variations with back-azimuth could be related to a complex structure beneath these stations with the likelihood of both a dipping Moho and crustal anisotropy. Our analysis reveals crustal thickening to the west beneath CAN station which could be due to slab convergence. The crustal thickening may also be related to the broad Macquarie volcanic arc, which is rooted to the Moho. The crustal anisotropy may arise from a strong N–S structural trend in the eastern Lachlan Orogen and to the preferred crystallographic orientation of seismically anisotropic minerals in the lower and middle crust related to the paleo-Pacific plate convergence.  相似文献   
947.
In this paper, the origin of rocking‐type excitations and their effects on the response of base isolated structures are studied. In particular, the role of kinematic interaction in the determination of the rocking excitation is highlighted. The cases of surface foundations subjected to horizontally propagating waves, as well as of embedded foundations under vertically incident shear waves are examined. The validity of the kinematic interaction based on the rigid base mat assumption is discussed. It is shown that, in the case of classical horizontal isolation, rocking input may amplify significantly the response of the lower non‐isolated modes. The examination of full three‐dimensional isolation and active and semi‐active control methods demonstrates the efficacy of these methods to improve the performance of seismically isolated structures subjected to rocking excitations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
948.
在流纹质岩浆中,存在两种不混溶的熔体,一种熔体富SiO_2贫FeO,另一种则相反。从熔体结构的角度看,前一种熔体富桥氧,后者则富自由氧。水的解聚作用可以改变流纹质岩浆的结构,即降低它的聚合程度,因此,含水流纹岩浆的粘度低于玄武岩浆的粘度,从而使流纹岩中流纹构造发育。 实际工作中应避免混淆流纹岩与酸性熔结凝灰岩。  相似文献   
949.
本文对不同成因类型的锡石晶体形态进行了研究,并从PBC(周期性键链)理论出发,讨论了锡石晶体形态与晶体结构的关系。笔者认为,锡石晶体具有三种F面,即s{111}、e{101}、m{110},与Hartman对同样结构类型的金红石晶面性质划分有所差异。据锡石晶面结构性质所推导的理想晶体形态图,与晶体测量所得到的天然晶体形态图总体上相吻合。  相似文献   
950.
我国几个矿区叶蜡石X射线粉晶衍射研究   总被引:4,自引:0,他引:4  
李文瑛 《矿物学报》1989,9(4):378-382
对我国几个主要类型叶蜡石矿的叶蜡石做了X射线粉晶衍射研究。从大量实验结果发现,所研究叶蜡石存在单斜晶系和三斜晶系两种多型。单斜晶系(2M);空间群G_(2h)~6-C2/c,a=5.175A,b=8.902A,c=18.673A,β=100.1°,Z=4;三斜晶系(1Tc):空间群P_c,a=5.162A,b=8.965A,c=9.346A,a=91.2°,β=99.96°,γ=89.91°,Z=2。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号