首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2441篇
  免费   659篇
  国内免费   1356篇
测绘学   38篇
大气科学   2270篇
地球物理   1024篇
地质学   642篇
海洋学   80篇
天文学   5篇
综合类   90篇
自然地理   307篇
  2024年   23篇
  2023年   82篇
  2022年   102篇
  2021年   149篇
  2020年   147篇
  2019年   170篇
  2018年   159篇
  2017年   178篇
  2016年   139篇
  2015年   178篇
  2014年   187篇
  2013年   362篇
  2012年   191篇
  2011年   181篇
  2010年   146篇
  2009年   192篇
  2008年   179篇
  2007年   241篇
  2006年   231篇
  2005年   200篇
  2004年   142篇
  2003年   118篇
  2002年   107篇
  2001年   102篇
  2000年   86篇
  1999年   74篇
  1998年   71篇
  1997年   62篇
  1996年   59篇
  1995年   52篇
  1994年   40篇
  1993年   25篇
  1992年   16篇
  1991年   20篇
  1990年   10篇
  1989年   7篇
  1988年   13篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4456条查询结果,搜索用时 15 毫秒
901.
A neural network with two hidden layers is developed to forecast typhoon rainfall. First, the model configuration is evaluated using eight typhoon characteristics. The forecasts for two typhoons based on only the typhoon characteristics are capable of showing the trend of rainfall when a typhoon is nearby. Furthermore, the influence of spatial rainfall information on rainfall forecasting is considered for improving the model design. A semivariogram is also applied to determine the required number of nearby rain gauges whose rainfall information will be used as input to the model. With the typhoon characteristics and the spatial rainfall information as input to the model, the forecasting model can produce reasonable forecasts. It is also found that too much spatial rainfall information cannot improve the generalization ability of the model, because the inclusion of irrelevant information adds noise to the network and undermines the performance of the network. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
902.
Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time‐step, grid‐based, conceptual rainfall–runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream‐flow events in the river system. In conjunction with opportunistic gaugings of stream‐flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream‐flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment‐wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream‐flow events makes the development of relatively complex rainfall–runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid‐based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall–runoff responses, flexibility in defining data output points and a parsimonious water‐balance–routing model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
903.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
904.
Hedgerow is one of the most important rural landscapes in the world, especially in Europe. Knowledge about the hydrological role of hedgerows is useful in many fields of study, such as hydrological modelling and rural landscape management. The aim of this study was to investigate the impact of a hedgerow on rainfall distribution, soil-water potential gradient, lateral water transfer and water balance. A hillslope with a hedgerow perpendicular to the slope was monitored. To evaluate hedgerow rainfall interception, rainfall was measured (hourly, daily, and by rainfall event) both next to and up to 16 m upslope and 12 m downslope perpendicularly away from the hedgerow. The strongest correlation between rainfall next to the hedgerow and rainfall at more distant points was obtained using data measured per rainfall event. The average percentage of rainfall intercepted equalled 28% for the leafed period and 12% for the leafless period. The impact of the hedgerow on spatial rainfall distribution was related to distance from the hedgerow and rainfall amount. Annual distribution of soil-water potential showed that the hedgerow influenced it up to 9 m upslope and 6 m downslope, the area in which most of the hedgerow's roots were observed. The soil was driest at the end of summer, which delayed soil rewetting during autumn in areas surrounding the hedgerow. Annual groundwater dynamics exhibited three distinct periods due to temporal rainfall distribution and, especially at the end of summer, root-water uptake. In addition, the total potential gradient showed that unsaturated flow was directed towards the hedgerow in summer and autumn. These results indicate that at the local scale hedgerows influences (1) spatial rainfall distribution, (2) soil rewetting, and (3) groundwater recharge, often at distances well beyond the hedgerow's drip line. Consequently, the processes involved in soil-water dynamics around hedgerows should be integrated into relevant hydrological models, especially for catchments with a dense hedgerow network. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
905.
A numerical model to predict landslide movements along pre‐existing slip surfaces from rainfall data is presented. The model comprises: a transient seepage finite‐element analysis to compute the variations of pore water pressures due to rainfall; a limit equilibrium stability analysis to compute the factors of safety along the slip surface associated with transient pore pressure conditions; an empirical relationship between the factor of safety and the rate of displacement of the slide along the slip surface; an optimization algorithm for the calibration of analyses and relationships based on available monitoring data. The model is validated with reference to a well‐monitored active slide in central Italy, characterized by very slow movements occurring within a narrow band of weathered bedrock overlaid by a clayey silt colluvial cover. The model is conveniently divided and presented in two parts: a groundwater model and a kinematic model. In the first part, monthly recorded rainfall data are used as time‐dependent flow boundary conditions of the transient seepage analysis, while piezometric levels are used to calibrate the analysis by minimizing the errors between monitoring data and computed pore pressures. In the second part, measured inclinometric movements are used to calibrate the empirical relationship between the rate of displacement along the slip surface and the factor of safety, whose variation with time is computed by a time‐dependent stability analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
906.
Despite the importance of mountain ranges as water providers, knowledge of their climate variability is still limited, mostly due to a combination of data scarcity and heterogeneous orography. The tropical Andes share many of the main features of mountain ranges in general, and are subject to several climatic influences that have an effect on rainfall variability. Although studies have addressed the large-scale variation, the basin scale has received little attention. Thus, the purpose of this study was to obtain a better understanding of rainfall variability in the tropical Andes at the basin scal, utilizing the Paute River basin of southern Ecuador as a case study. Analysis of 23 rainfall stations revealed a high spatial variability in terms of: (i) large variations of mean annual precipitation in the range 660–3400 mm; (ii) the presence of a non-monotonic relation between annual precipitation and elevation; and (iii) the existence of four, sometimes contrasting, rainfall regimes. Data from seven stations for the period 1964–1998 was used to study seasonality and trends in annual, seasonal and monthly precipitation. Seasonality is less pronounced at higher elevations, confirming that in the páramo region, the main water source for Andean basins, rainfall is well distributed year round. Additionally, during the period of record, no station has experienced extreme concentrations of annual rainfall during the wet season, which supports the concept of mountains as reliable water providers. Although no regional or basin-wide trends are found for annual precipitation, positive (negative) trends during the wet (dry) season found at four stations raises the likelihood of both water shortages and the risk of precipitation-triggered disasters. The study demonstrates how variable the precipitation patterns of the Andean mountain range are, and illustrates the need for improved monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
907.
Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and duration. Crop residue interception is a function of crop residue type, residue density and cover, and rainfall intensity and duration. We account for these controlling factors and present a model for both interception components based on Merriam's approach. The modified Merriam model and the current modelling approaches were examined and compared with two field studies and one laboratory study. The Merriam model is shown to agree well with measurements and was implemented within the Agricultural Research Service's Root Zone Water Quality Model (RZWQM). Using this enhanced version of RZWQM, three simulation studies were performed to examine the quantitative effects of rainfall interception by corn and wheat canopies and residues on soil hydrological components. Study I consisted of 10 separate hypothetical growing seasons (1991–2000) for canopy effects and 10 separate non‐growing seasons (1991–2000) for residue effects for eastern Colorado conditions. For actual management practices in a no‐till wheat–corn–fallow cropping sequence at Akron, Colorado (study II), a continuous 10‐year RZWQM simulation was performed to examine the cumulative changes on water balance components and crop growth caused by canopy and residue rainfall interception. Finally, to examine a higher precipitation environment, a hypothetical, no‐till wheat–corn–fallow rotation scenario at Corvallis, Oregon, was simulated (study III). For all studies, interception was shown to decrease infiltration, runoff, evapotranspiration from soil, deep seepage of water and chemical transport, macropore flow, leaf area index, and crop/grain yield. Because interception decreased both infiltration and soil evapotranspiration, no significant change in soil water storage was simulated. Nonetheless, these findings and the new interception models are significant new contributions for hydrologists. Published in 2006 John Wiley & Sons, Ltd.  相似文献   
908.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
909.
对足够精细的观测资料做详尽的分析有助于澄清对流组织与增强的动力机制。本文利用机场跑道两端的分钟雨量资料、常规观测资料、加密自动站、ERA5再分析和S波段双偏振、X波段双偏振相控阵雷达资料,对2022年7月15日厦门机场出现的一次短时强降水天气进行了分析。结果表明:此次过程因阵风锋在传播过程中与地面辐合线交叉碰并而触发抬升,在500 hPa与850 hPa假相当位温差的负大值区和低层高温高湿的环境下激发出新的对流,给厦门机场带来罕见的短时强降水天气,期间分钟雨量最大达2.5 mm、跑道能见度降至400 m,两者呈反相关,但当分钟雨量大于1.6 mm时两者反相关性减弱,能见度谷值则晚于雨量峰值出现。观测分析表明,径向速度的气旋性切变与分钟雨量的变化趋势较为一致,两者有较好的对应关系。当2~5 km高度存在气旋性切变时雨量显著增加,当有两个高度层的切变强度达到2×10-3s-1以上时分钟雨量可达约2 mm,为本次短时强降水的组织特征。  相似文献   
910.
GIS analysis at 30-m resolution reveals that effectiveness of slope-destabilizing processes in the San Francisco Bay area varies with compass direction. Nearly half the soil slip/debris flows mapped after the catastrophic rainstorm of 3–5 January 1982 occurred on slopes that face S to WSW, whereas fewer than one-quarter have a northerly aspect. Azimuthal analysis of hillside properties for susceptible terrain near the city of Oakland suggests that the skewed aspect of these landslides primarily reflects vegetation type, ridge and valley alignment, and storm–wind direction. Bedrock geology, soil expansivity, and terrain height and gradient also were influential but less so; the role of surface curvature is not wholly resolved. Normalising soil-slip aspect by that of the region's NNW-striking topography shifts the modal azimuth of soil-slip aspect from SW to SE, the direction of origin of winds during the 1982 storm—but opposite that of the prevailing WNW winds. Wind from a constant direction increases rainfall on windward slopes while diminishing it on leeward slopes, generating a modelled difference in hydrologically effective rainfall of up to 2:1 on steep hillsides in the Oakland area. This contrast is consistent with numerical simulations of wind-driven rain and with rainfall thresholds for debris-flow activity. We conclude that storm winds from the SE in January 1982 raised the vulnerability of the Bay region's many S-facing hillsides, most of which are covered in shallow-rooted shrub and grass that offer minimal resistance to soil slip. Wind-driven rainfall also appears to have controlled debris-flow location in a major 1998 storm and probably others. Incorporating this overlooked influence into GIS models of debris-flow likelihood would improve predictions of the hazard in central California and elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号