首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   25篇
  国内免费   31篇
测绘学   5篇
大气科学   30篇
地球物理   70篇
地质学   195篇
海洋学   10篇
天文学   1篇
综合类   21篇
自然地理   120篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   15篇
  2019年   14篇
  2018年   15篇
  2017年   13篇
  2016年   14篇
  2015年   14篇
  2014年   26篇
  2013年   24篇
  2012年   21篇
  2011年   20篇
  2010年   16篇
  2009年   25篇
  2008年   20篇
  2007年   28篇
  2006年   34篇
  2005年   20篇
  2004年   20篇
  2003年   17篇
  2002年   10篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有452条查询结果,搜索用时 312 毫秒
151.
《International Geology Review》2012,54(16):2060-2082
The Kazda?? Massif was previously considered as the metamorphic basement of the Sakarya Zone, a microcontinental fragment in NW Anatolia. Our new field mapping, geochemical investigations, and radiometric dating lead to a re-evaluation of previous suggested models of the massif. The Kazda?? metamorphic succession is subdivided into two major units separated by a pronounced unconformity. The lower unit (the Tozlu metaophiolite) is a typical oceanic crust assemblage consisting of ultramafic rocks and cumulate gabbros. It is unconformably overlain by a thick platform sequence of the upper group (the Sar?k?z unit). The basement ophiolites and overlying platform strata were subjected to a single stage of high-temperature metamorphism under progressive compression during the Alpine orogeny, accompanied by migmatitic metagranite emplacement. Radiometric age data obtained from the Kazda?? metamorphic succession reveal a wide range of ages. Metagranites of the Kazda?? metamorphic succession define a U–Pb discordia upper intercept age of ca. 230 Ma and a lower intercept age of 24.8 ± 4.6 Ma. This younger age agrees with 207Pb/206Pb single-zircon evaporation ages of 28.2 ± 4.1 to 26 ± 5.6 Ma. Moreover, a lower intercept age of 28 ± 10 Ma from a leucocratic metagranite supports the Alpine ages of the massif within error limits. Reconnaissance detrital zircon ages constrain a wide range of possible transport and deposition ages of the metasediments in the Sar?k?z unit from ca. 120 to 420 Ma. Following high-temperature metamorphism and metagranite emplacement, the Kazda?? sequence was internally imbricated by Alpine compression, and the lowermost Tozlu ophiolite thrust southward onto the Sar?k?z unit. Field mapping, internal stratigraphy, and new radiometric age data show that the Sar?k?z unit is the metamorphic equivalent of the Mesozoic platform succession of the Sakarya Zone. The underlying metaophiolites are remnants of the Palaeo tethys Ocean, which closed during the early Alpine orogeny. After strong deformation attending nappe emplacement, the unmetamorphosed Miocene Evciler and Kavlaklar granites intruded the tectonic packages of the Kazda?? Massif. During Pleistocene time, the Kazda?? Massif was elevated by EW trending high-angle normal faults dipping to Edremit Gulf, and attained its present structural and topographic position. Tectonic imbrication, erosion and younger E–W-trending faulting were the main cause of the exhumation of the massif.  相似文献   
152.
The Ronda peridotite is a group of lherzolite slabs (1.5 to 2 km thick) in southern Spain. Despite clear evidence that pre-Alpine events affected pre-Permo-Triassic units from the Alborán domain (internal zone of the Betic-Rif Cordillera, Spain, and Morocco), numerous papers continue to emphasize Alpine metamorphic and structural evolution. Here, we evaluate the pre-Cenozoic evolution of the Ronda peridotite by reporting new petrographic and U–Pb SHRIMP zircon dating of meta-sedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain) directly overlying the Ronda peridotite. Field inspection and petrographical study revealed generalized migmatitic textures and a gradual transition mainly defined by garnet content (from ~30 to <3 wt.%) and size (from 1.5 cm to <0.5 mm) in the overlying granulite-gneiss sequence, suggesting that most garnet grew as a consequence of the peridotite emplacement. Garnet shows notable variations in composition and inclusion types, which are interpreted as reflecting different stages of garnet growth. Diamond-bearing garnets are only well-preserved in gneisses from the uppermost part of the sequence, whereas the large garnets from rocks overlying the peridotite mainly record later thermal events. SHRIMP zircon dating indicates two age peaks at 330 ± 9 and 265 ± 4 Ma. The oldest age characterizes rims overgrowing detrital cores and reflects an early Hercynian metamorphism; the younger age characterizes zircon with magmatic oscillatory zoning, reflecting anatexis. On the basis of these data and of previous dating of monazite included in the large garnets, we conclude that the peridotite was emplaced either shortly before or during early Hercynian times, ~330 Ma.  相似文献   
153.
Abstract

— The composite nappe of the Spongtang ophiolite is thrust over Mesozoic and Cenozoic sediments of the North-Indian margin and shelf. The ophiolitic peridotiles tectonic-ally overlie a sedimentary melange, the detailed stratigraphy of which reveals the evolution of the South-Tethyan margin from its opening to its closure. The matrix of the melange is dated as Upper Campanian to Lower Eocene. Volcano-sedimentary olistoliths indicate carbonate platform sedimentation associated with alkaline lavas in the Permian, followed by more pelagic sedimentation of Upper Triassic and mid- Cretaceous age. They derived from external platforms near to the Indian shelf, but separated from it. Composite olistoliths of mid to late Cretaceous age, containing Permian elements, are found in the upper Cretaceous to lower Eocene wildflysch. Primary contacts of melange upon serpentinites indicates that the deeply eroded oceanic crust served partly as a substratum for the melange.  相似文献   
154.
Abstract

The Rhodope massif of Bulgaria and Greece is a complex of Mesozoic synmetamorphic nappes stacked in an Alpine active margin environment. A new analysis of the Triassic to Eocene history of the Vardar suture zone m Greece discloses its Cretaceous setting as a subduction trench. We present a geological traverse that takes into account these new observatons and runs from the Hellenides to the Balkans, i.e. from he African to the Eurasian sides of the Tethys ocean, respectively. The present review first defines the revisited limits of the Rhodope metamorphic complex. In particular, the lower part of the Serbo- Macedonian massif is an extension of the Rhodope units west of the Struma river. Its upper part is separated as the Frolosh greenschist unit, which underlies tectonic slivers of Carpathc-Balkanic type. Several greenschist units which locally yield Mesozoic fossils, follow the outer limits of the Rhodope. Their former attribution to a stratigraphic cover of the Rhodope has been proven false. They are divided into roof greenschists, which partly represent an extension of the Strandza Jurassic black shales basin, and western greenschists, which mostly derive from the Vardar Cretaceous olistostromic assemblage. The Rhodope complex of synmetamorphic nappes includes Continental Units and Mixed Units. The Continental Units comprise quartzo-feld-spathic gneisses in addition to thick marble layers. The Mixed Units comprise meta-ophiolites as large bodies or small knockers. They are imbricated, forming an open dome whose lower, Continental Unit constitutes the Drama window. The uppermost Mixed Unit is overlain by remnants of the European plate. The present-day structure results from combined large-scale thrust and exhumation tectonics. Regional inversions of synmetamorphic sense-of-shear indicate that intermediate parts of the wedge moved upward and forward with respect to both the lower and upper plates. A kinematic model is based on buoyancy-driven decoupling at depth between subducted continental crust and the subducting lithosphere. Continuing convergence allows coeval underthrusting of continental crust at the footwall, decoupling at depth, and upward-forward expulsion of a low-density metamorphic wedge above. The continental crust input and its upward return may have lasted for at least the whole of the Early Cretaceous, as indicated by isotopic ages and the deformation history of the upper plate. A Late Eocene marine transgression divides the ensuing structural and thermal evolution into a follow-up uplift stage and a renewed uplift stage. Revision of the limits of the Vardar belt in Greece first resulted in separating the Paikon mountain as a tectonic window below the Vardar nappes. It belongs to the western, Hellenic foreland into which a system of thrust developed downward between 60 and 40 Ma. The eastern limit is a dextral strike-slip fault zone that developed greenschist facies foliations locally dated at 50–40 Ma. Revision of the lithological components discloses the preponderance of Cretaceous volcano-detritic and olistostromic sequences that include metamorphite blocks of Rhodope origin. Rock units that belong to the Vardar proper (ophiolites, Triassic and Jurassic radiolarites, remnants of an eastern Triassic passive margin) attest for a purely oceanic basin. The Guevgueli arc documents the Jurassic change of the eastern Triassic passive margin into an active one. This arc magmatic activity ended in the Late Jurassic and plate convergence was transferred farther northeast to the subduction boundary along which the Rhodope metamorphic complex formed. We interpret the Rhodope and the Vardar as paired elements of a Cretaceous accretionary wedge. They document the tectonic process that exhumed metamorphic material from under the upper plate, and the tectonic-sedimentary process that fed the trench on the lower plate. The history of the Rhodope-Vardar pair is placed in the light of the history of the Tethys ocean between Africa and Europe. The Cretaceous subduction then appears as the forerunner of the present Hellenic subduction, accounting for several shifts at the expense of the lower plate. The Late Eocene shift, at the closure of the Pindos basin, is coeval with the initiation of new uplift and magmatism in the Rhodope, which probably document the final release of the low-density, continental root of the Rhodope from subduction drag.  相似文献   
155.
Abstract

Alluvial fans are abundant in many valleys of the Alps, consisting of important sites for human settlements. Relationships between alluvial fan morphometry and drainage basin characteristics have been investigated in six valleys of the Eastern Italian Alps, displaying different geological and morphological conditions. Both debris flow fans and fluvial fans are present in the studied region, the latest occurring only in quite large basins. Expansion of alluvial fans is greatly determined by the topographic characteristics of receiving valleys. Fan gradient is mainly affected by basin ruggedness conditioning depositional processes, by debris size, and, in some cases, by post-depositional reworking of fan surfaces.  相似文献   
156.
Abstract

Throughout SE France, 13C-values of CO2releases suggest that a variable part of the C02 emission derives from mantle and/or lower crust. Carbon dioxide emission takes place in various geological settings. Geodynamical analyses lead to the identification of five provinces: the Sub-Alpine Ranges, the French Massif Central, the Mediterranean part of the Languedoc, the western Pyrénées and the Alps at the West of the Penninic front. Possible correlations are suggested between CO2 flux and tectonic history of the structural provinces.

Possible processes by which CO2 is extracted from the mantle, stored and transferred to the surface are investigated for each of these provinces. Major crustal scale gas movements may have taken place during the Carboniferous (Variscan and Late Variscan tectogenesis), the Lias and Dogger (rifting), the Upper Cretaceous and the Cenozoic (Alpine tectogenesis), A model of successive circulations of fluids on the scale of the whole Southeastern France CO2-belt is proposed. This integrated isotopic and geodynamic approach contributes to a better understanding of the regional CO2flux.  相似文献   
157.
选取长江源北麓河地区受冻融作用影响而严重退化的高寒草甸典型区域进行取样, 通过实验和模拟等方法, 对该区域内不同深度土层的土壤特征曲线、土壤饱和导水率、土壤粒径、容重和总孔隙度进行了研究和分析.结果表明: 土壤的水分特征曲线由Gardner等与van Genuchten提出的幂函数方程拟合效果良好, 0.1 MPa为土壤水分特征曲线的临界值. 0~5 cm表层土壤的持水能力最小, 20~30 cm土壤的持水能力最大. 0~5 cm表层土壤供水能力最小, 15~30 cm土层的供水性能最好, 适合植被根系的生长.土壤的饱和导水率随着深度的增加而减小.  相似文献   
158.
封育是推广范围最广的草地恢复措施之一. 为研究不同封育年限高寒草甸植被、土壤碳密度变化, 对1 a、6 a和16 a不同封育年限样地监测结果进行分析.结果表明: 不同封育年限高寒草甸植被现存碳密度表现出封育16 a>封育1 a>封育6 a, 分别为1 522.57 gC·m-2、1 323.12 gC·m-2和1 148.17 gC·m-2, 但不同封育年限之间植被现存碳密度差异不显著(P>0.05). 土壤碳密度垂直分布明显, 0~5 cm和5~10 cm土层有机碳密度较高, 随土层深度增加土壤有机碳密度明显下降, 土壤容重上升;不同封育年限之间0~40 cm层次土壤碳密度和土壤容重差异性均不显著, 但仍可表现出土壤碳密度封育1 a>封育6 a>封育16 a, 分别为28 636.32 gC·m-2、26 570.92 gC·m-2和26 060.71 gC·m-2;同时, 土壤容重随封育时间延长而下降. 对7月下旬到10月上旬净生态系统CO2交换率(NEE)监测来看, 封育1 a植被土壤碳吸收速率显著高于封育16 a(P<0.05);而排放率与封育16 a样地接近, 差异不显著(P>0.05).  相似文献   
159.
Suspended sediment concentration (SSC) in the Ova da Morteratsch, Switzerland, measured during July 2007 was closely associated with discharge (Q) and showed statistically significant relationships at the p < 0.001 level at the proximal and distal ends of the 600 m pro‐glacial zone. SSC predicted from 10‐minute turbidity records gives a much more detailed insight into SSC fluctuations and identified SSC peaks which do not coincide with discharge peaks. Net (proximal – distal) 10‐minute suspended sediment loads (SSL) are predominantly positive (i.e. suspended sediment is being stored in the reach) for most of the 7–19 July 2007 record. Net (proximal – distal) SSLs correlate closely with discharge for the first part of the record (7–13 July) but from 14 to 19 July suspended sediment exhaustion is in evidence and discrete phases of negative net SSL (i.e. sediment flushing) are likely for up to six hours on three separate days which coincide with phases of high discharge and exhaustion of the glacial suspended sediment sources. Analysis of Q at the Berninabach–Pontresina gauging station (5 km downstream) for the past five years revealed that maximum monthly discharges capable of generating sediment flushing events occur in an average of four months each year. The study emphasises the rapid change in suspended sediment transport and yields with distance from the glacier snout and highlights the importance of measurements as close to the glacier snout as possible if data are to be representative of the glaciated land up‐valley. A better understanding of the processes of sediment exchange and the colonisation and stabilisation of sediment stores by vegetation in such pro‐glacial zones is essential if we are to improve predictions of the impacts of climate change on river sediment dynamics and the subsequent effects on aquatic ecology.  相似文献   
160.
To accurately estimate soil organic carbon (SOC) storage in upper alpine to nival zones on the Tibetan Plateau, we inventoried SOC pools in 0–0.3 m profiles along an altitudinal gradient (4400–5300 m asl). We also studied vegetation properties and decomposition activity along the gradient to provide insight into the mechanisms of SOC storage. The vegetation cover and belowground root biomass showed a gradual increased with altitude, reaching a peak in the upper alpine zone at 4800–4950 m before decreasing in the nival zone at 5200–5300 m.Decomposition activity was invariant along the altitudinal gradient except in the nival zone. SOC pools at lower sites were relatively small (2.6 kg C m−2 at 4400 m), but increased sharply with altitude, reaching a peak in the upper alpine zone (4950 m; 13.7 kg C m−2) before decreasing (1.0 kg C m−2 at 5300 m) with altitude in the nival zone. SOC pool varied greatly within individual alpine meadows by a factor of five or more, as did bulk density, partly due to the effect of grazing. Inventory data for both carbon density and bulk density along altitudinal gradients in alpine ecosystems are of crucial importance in estimating global tundra SOC storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号