首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   25篇
  国内免费   31篇
测绘学   5篇
大气科学   30篇
地球物理   70篇
地质学   195篇
海洋学   10篇
天文学   1篇
综合类   21篇
自然地理   120篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   15篇
  2019年   14篇
  2018年   15篇
  2017年   13篇
  2016年   14篇
  2015年   14篇
  2014年   26篇
  2013年   24篇
  2012年   21篇
  2011年   20篇
  2010年   16篇
  2009年   25篇
  2008年   20篇
  2007年   28篇
  2006年   34篇
  2005年   20篇
  2004年   20篇
  2003年   17篇
  2002年   10篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有452条查询结果,搜索用时 279 毫秒
11.
1IntroductionTherisingatmosphericgreenhousegaseswerebelievedtobetheprimarycauseofglobalclimatechange(Tettetal.,1999;Crowley,2000).Amongthegreenhousegases,theconcentrationofatmosphericcarbondioxidehasincreasedfrom280ppmsincepre-industrialtimestocurrent355ppm,whichaccountedfor50%ofthetotalgreenhouseeffect(Nefteletal.,1985;Friedlietal.,1986;Rodhe,1990;Fanetal.,1998).ElevatedCO2hasamarkedeffectonterrestrialecosystemprocesses(Melilloetal.,1996).TheQinghai-TibetPlateau,thelargestgeomorphologica…  相似文献   
12.
The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106kn2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation. An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux of alpine meadow from July to October,2003. The continuous carbon flux data were used to analyze the relationship between net ecosystem carbon dioxide exchange (NEE) and photosynthetically active radiation (PAR), as well as the seasonal patterns of apparent quantum yield (α) and maximum ecosystem assimilation (Pmax).Results showed that the daytime NEE fitted fairly well with the PAR in a rectangular hyperbola function, with α declining in the order of peak growth period (0.0244 μmolCO2 · μmol-1pAR) >early growth period > seed maturing period > withering period (0.0098 μmolCO2 · μmol-1pAR).The Pmax did not change greatly during the first three periods, with an average of 0.433mgCO2· m-2· s-1, i.e. 9.829 μmolCO2· m-2· s-1. However, during the withering period, Pmax was only 0.35 mgCO2 · m-2 · s-1, i.e. 7.945 μmolCO2 · m-2 · s-1. Compared with other grassland ecosystems, the α of the Tibetan Plateau alpine meadow ecosystem was much lower.  相似文献   
13.
The Wilhelmine Alpe section near Immenstadt (Allgäu, south Germany), which represents one of the best continuously exposed outcrops within the northern Alpine foreland basin, has been analyzed for magnetostratigraphic and palynostratigraphic signals. The section comprises the marine-to-terrestrial transition from Lower Marine (UMM) to Lower Freshwater Molasse (USM) sediments. Based on the correlation of the local magnetic pattern with the geomagnetic polarity timescale (GPTS) and palynostratigraphic data, an age of about 31 Ma is suggested for the UMM–USM transition in the Wilhelmine Alpe section. A comparison with coeval magnetostratigraphic sections from central and eastern Switzerland indicates that the regression of the UMM sea along the southern margin of the Molasse basin occurred strongly heterochronously between 31.5 and 30 Ma. The heterochroneity is attributed to the deposition of fan-delta and alluvial fan sediments which document that the overall marine conditions during the UMM were accompanied by strong clastic input derived from the rising Alps. This clastic contribution had a much stronger influence on the depositional pattern than previously thought.  相似文献   
14.
The lithosphere of the Northern Alpine foreland has undergone a polyphase evolution during which interacting stress-induced intraplate deformation and upper mantle thermal perturbations controlled folding of the thermally weakened lithosphere. In this paper we address relationships among deeper lithospheric processes, neotectonics and surface processes in the Northern Alpine foreland with special emphasis on tectonically induced topography. We focus on lithosphere memory and neotectonics, paying special attention to the thermo-mechanical structure of the Rhine Graben System and adjacent areas of the northern Alpine foreland lithosphere. We discuss implications for mechanisms of large-scale intraplate deformation and links with surface processes and topography evolution.  相似文献   
15.
Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types (alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10-20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen (N), total potassium (K), and organic carbon (C) in 10-20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P (phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.  相似文献   
16.
Low temperature is an important limiting factor for alpine ecosystems on the Tibetan Plateau. This study is based on data from on-site experimental warming platforms (open top chambers, OTC) at three elevations (4300 m, 4500 m, 4700 m) on the Qinghai-Tibet Plateau. The carbon and nitrogen stoichiometry characteristics of plant communities, both above-ground and below-ground, were observed in three alpine meadow ecosystems in August and September of 2011 and August of 2012. Experimental warming significantly increased above-ground nitrogen content by 21.4% in September 2011 at 4500 m, and reduced above-ground carbon content by 3.9% in August 2012 at 4300 m. Experimental warming significantly increased below-ground carbon content by 5.5% in August 2011 at 4500 m, and the below-ground ratio of carbon to nitrogen by 28.0% in September 2011 at 4300 m, but reduced below-ground nitrogen content by 15.7% in September 2011 at 4700 m, below-ground carbon content by 34.3% in August 2012 at 4700 m, and the below-ground ratio of carbon to nitrogen by 37.9% in August 2012 at 4700 m. Experimental warming had no significant effect on the characteristics of community carbon and nitrogen stoichiometry under other conditions. Therefore, experimental warming had inconsistent effects on the carbon and nitrogen stoichiometry of plant communities at different elevations and during different months. Soil ammonium nitrogen and nitrate nitrogen content were the main factors affecting plant community carbon and nitrogen stoichiometry.  相似文献   
17.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
The structural study of the Saint-Laurent – La Jonquera pluton (Eastern Pyrenees), a Variscan composite laccolithic intrusion emplaced in metasedimentary and gneissic rocks of the Roc de Frausa dome, by means of the anisotropy of magnetic susceptibility (AMS) technique has allowed the determination of the nature and orientation of its magmatic fabrics. The magmatic foliation has a predominant NE–SW strike and the mean lineation is also NE–SW trending with a shallow plunge. A strain gradient is measured so that the tonalites to granodiorites that form the basal parts of the pluton, and are intruded into amphibolite-facies metamorphic rocks, recorded the highest anisotropies, whereas the monzogranites and leucogranites, emplaced into upper crustal, low-grade metamorphic rocks, are weakly deformed. These results point to the synkinematic sequential emplacement of multiple granitoid sheets, from less to more differentiated magmatic stages, during the Late Carboniferous D2 event characterized by an E–W-trending dextral transpression. The magmatic foliation appears locally disturbed by the effects of two tectonic events. The first of them (D3) produced mylonitization of granitoids along NW–SE retrograding shear zones and open folds in the host Ediacaran metasediments of the Roc de Frausa massif, likely during late Variscan times. Interference between D2 and D3 structures was responsible for the dome geometry of the whole Roc de Frausa massif. The second and last perturbation consisted of local southward tilting of the granitoids coupled to the Mesozoic–Cenozoic cover during the Alpine.  相似文献   
19.
Diagenesis is an essential tool to reconstruct the development of reservoir rocks. Diagenetic processes - precipitation and dissolution - have an influence on pore space. The present paper aims to study the diagenetic history of deep-marine sandstones of the Austrian Alpine Foreland Basin. To reach that goal, sediment petrology and diagenetic features of more than 110 sandstone samples from water- and gas-bearing sections from gas fields within the Oligocene-Miocene Puchkirchen Group and Hall Formation has been investigated. Special emphasis was put on samples in the vicinity of the gas-water contact (GWC). The sediment petrography of sandstones of Puchkirchen Group and Hall Formation is similar; hence their diagenesis proceeded the same way. In fact, primary mineralogy was controlled by paleo-geography with increasing transport distance and diverse detrital input.Sediment petrographically, investigated sandstones from the water-bearing horizon seemed quite comparable to the gas-bearing sediments. In general, they can be classified as feldspatic litharenites to litharenites and display porosities of up to 30% and permeabilities of up to 1300 mD. The carbon and oxygen isotopic composition of bulk carbonate cements from these sandstones range from−3.8 to +2.2 and from −7.5 to +0.2‰ [VPDB]. However, near the Gas-Water Contact (GWC) a horizon with low porosities (<3%) and permeabilities (<0.1 mD) is present. This zone is completely cemented with calcite, which has a blocky/homogenous morphology. A slight, but significant negative shift in δ18O isotopy (−2.5‰) is evident.During early diagenesis the first carbonate generations formed. First a fibrous calcite and afterwards a micritic calcite precipitated. Further siliciclastic minerals, such as quartz and feldspar (K-feldspar and minor plagioclase), exhibit corroded grains. Occasionally, clay minerals (illite; smectite, chlorite) formed as rims around detrital grains. Late diagenesis is indicated by the formation of a low permeable zone at the GWC.  相似文献   
20.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号