首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   141篇
  国内免费   310篇
测绘学   16篇
大气科学   635篇
地球物理   68篇
地质学   74篇
海洋学   63篇
天文学   9篇
综合类   10篇
自然地理   15篇
  2024年   10篇
  2023年   14篇
  2022年   13篇
  2021年   20篇
  2020年   26篇
  2019年   32篇
  2018年   33篇
  2017年   29篇
  2016年   30篇
  2015年   29篇
  2014年   46篇
  2013年   63篇
  2012年   64篇
  2011年   43篇
  2010年   36篇
  2009年   43篇
  2008年   38篇
  2007年   51篇
  2006年   41篇
  2005年   29篇
  2004年   25篇
  2003年   24篇
  2002年   15篇
  2001年   12篇
  2000年   15篇
  1999年   13篇
  1998年   14篇
  1997年   17篇
  1996年   18篇
  1995年   11篇
  1994年   9篇
  1993年   5篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有890条查询结果,搜索用时 15 毫秒
101.
利用常规观测资料和NCEP(1°x1°)再分析资料,对2020年2月发生在内蒙古的一次地面回流与倒槽共同作用下的暴雪天气过程进行详细分析。结果表明:本次暴雪过程的主要影响系统是高空槽、700hPa切变线、高低空急流、地面冷高压、倒槽和冷锋。在高空下沉气流及1000~800hPa上东北急流的共同作用下,干冷气流形成“冷垫”,迫使暖湿空气沿冷垫抬升,同时不断的有干冷空气向中低层暖湿气流下方入侵,与中高层的西南急流形成深厚的锋生区和锋面次级环流,二者的正反馈作用为暴雪提供增幅作用。700hPa西南急流不断输送水汽,暴雪区位于比湿、水汽通量和水汽通量散度辐合的大值区。低层辐合高层辐散,配合显著的上升气流,有利于水汽积聚与输送和上升运动。强锋生落区与暴雪区域相对应,其中水平变形作用项对锋生的贡献最大,垂直运动项对锋生的贡献最小。湿位涡在强降雪落区内MPV1>0, MPV2<0,有利于本次暴雪过程的发生,高空下传的正MPV1会引起低层冷空气加强,冷暖空气对比度加大,有利于锋生,同时湿斜压性增强,诱发气旋式环流,进一步增强降雪。  相似文献   
102.
“96·8”华北暴雨数值模拟与稳定性分析   总被引:3,自引:3,他引:3  
边清河  丁治英  董金虎 《气象》2006,32(8):17-22
分析1996年8月发生在华北地区的台风暴雨过程的环流形势,发现:副热带高压与台风低压之间的气压梯度很大,宽广的偏南急流源源不断地向北输送水汽和能量,而太行山一带正处于汇合区,构成十分有利的暴雨天气形势。应用MM5数值预报方法对1996年8月4—5日的降雨天气过程进行数值模拟,并依据天气学原理和位涡理论对此过程的稳定性进行分析认为:(1)MM5数值预报模式较好地模拟出了台风暴雨的物理过程。(2)此次降雨的不稳定层结有南高北低现象,同时有对称不稳定和对流不稳定存在;条件性对称不稳定可使环流加速,对降水有一定的增幅作用。  相似文献   
103.
使用FY2卫星TBB资料、NCEP最终分析资料(1°×1°)和中尺度模式WRF,对0601号强台风"珍珠"的"急翘"异常转向路径和内核结构变化进行诊断分析和数值模拟。结果表明:"珍珠"移向变化与环境引导气流和位涡倾向1波分量正异常有关,"急翘"前12小时,环境引导气流向北偏转,位涡倾向1波分量正异常对应着"珍珠"移动方向变化;内核非对称结构发展与环境风垂直切变演变有关,垂直切变使得涡旋倾斜,涡旋倾斜方向出现较强的上升运动,导致"珍珠"内核偏南象限对流活动较强。  相似文献   
104.
An observational analysis of satellite blackbody temperature (TBB) data and radar images suggests that the mesoscale vortex generation and merging process appeared to be essential for a tropical-depression-related heavy rain event in Shanghai, China. A numerical simulation reproduced the observed mesoscale vortex generation and merging process and the corresponding rain pattern, and then the model outputs were used to study the related dynamics through diagnosing the potential vorticity (PV) equation. The t...  相似文献   
105.
应用倾斜涡度发展理论,对云南的一次冬季强降水天气进行诊断分析。结果表明:强降水发生在θe 陡立密集区内;倾斜涡度发展和条件性对称不稳定是形成强降水的重要因子;大气的弱位势稳定和强斜压性有利于云南冬季强降水的发生。  相似文献   
106.
2010年浙南地区一次暴雨过程诊断分析   总被引:4,自引:0,他引:4  
利用常规观测资料、中尺度自动站加密资料、多普勒雷达资料和NCEP1°×1°再兮析资料.对2010年5周8曲日发生在浙南的一次暴雨过程进行了诊断分析,结果发现:此次暴雨是在横槽转竖的大背景下,西风槽和高原槽东移合并加强,并在东移过程中与低层切变共同作用造成的;低空急流的形成在水汽的输送和聚集过程中发挥了重要作用;暴雨过程...  相似文献   
107.
将对流涡度矢量 (CVV) 应用于浅薄系统西南低涡引发的暴雨中,特别是将对流涡度矢量垂直分量 (Cz) 应用在2010年7月16—18日由西南涡引发的一次暴雨过程诊断中。研究了CVV垂直积分的各个分量与6 h累积降水量的关系,尤其是CVV垂直分量在西南涡暴雨过程中的指示意义。诊断结果表明:CVV垂直分量与西南涡引发的暴雨有一定对应关系,强降水发生时段与Cz垂直积分峰值出现的时间对应一致;在对流层低层850 hPa水平分布上,暴雨区位于CVV垂直分量的正值中心附近,偏向其梯度较大处;沿暴雨中心的CVV垂直分量,当对流层低层至高层呈现一致的正值时,暴雨强度会明显加强。  相似文献   
108.
A two-dimensional,semi-geostrophic numerical model incorporating the tropopause and stratosphere is used to investigate the effects of a positive potential vorticity anomaly and latent heat release on the frontogenetic process and the structure of the resulting frontal zone.It is demonstrated that(1) the inclusion of tropopause and stratosphere significantly changes the frontal structure only in the upper levels;(2) a clearly defined quasi-equivalent barotropic structure and a region of upward motion of finite width appear when a positive potential vorticity anomaly exists on the warm side of the maximum baroclinity in the lower troposphere,especially when it is located on the south edge of the baroclinic zone;(3) the above mentioned structure deteriorates as the frontogenesis proceeds in a dry atmosphere but can be maintained in a moist frontogenetic process with condensational heating;(4) the combination of a positive potential vorticity anomaly and the latent heat release is able to accelerate the frontogenesis significantly with the time needed to form an intense frontal zone reduced to less than 15 h.The results have significant theoretical importance in understanding the complex nature of frontal structure and frontogenesis,especially in understanding the dynamic structure of the subtropical frontal zone observed during early summer over East Asia.  相似文献   
109.
The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from 0 to n and rn vertical components with a given degree n. This equation is solved by treating the coefficient of the Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hyperbolic variations in vertical direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft over the globe closely. In addition, the sinusoidal vertical solutions with large eigenvalue G are trapped in low latitude, and the scales of these trapped modes are longer than 10 deg. lat. even for the top layer of the ocean and hence they are much larger than that given by the equatorial β-plane solutions. Therefore such baroclinic disturb-ances in the ocean can easily interact with those in the atmosphere.Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective depth H = RT / g taken as limited within a small range for the atmosphere.The propagation of the flow energy of the wave packet consisting of more than one degree is found to be along the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.  相似文献   
110.
采用常规观测资料和NCEP1°×1°资料,对山东半岛2005年、2008年、2010年的几次典型冷流暴雪过程进行了分析。分析结果表明:冷流暴雪的高空形势主要分为高空冷涡型和高空横槽型。高空冷涡型较高空横槽型降雪量偏大,暴雪站点多。高空冷涡型500hPa层以上的位涡值较高空横槽型偏大,高层位涡有利于低层正涡度的加强,促使低层产生低压环流及辐合上升运动,上升运动加强了海面水汽的垂直输送,故高空冷涡型上升速度较高空横槽型强,湿层较厚,高空冷涡型较高空横槽型更容易产生暴雪过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号