首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1584篇
  免费   213篇
  国内免费   373篇
测绘学   583篇
大气科学   486篇
地球物理   133篇
地质学   206篇
海洋学   518篇
天文学   15篇
综合类   147篇
自然地理   82篇
  2024年   9篇
  2023年   11篇
  2022年   47篇
  2021年   54篇
  2020年   76篇
  2019年   81篇
  2018年   59篇
  2017年   97篇
  2016年   63篇
  2015年   99篇
  2014年   104篇
  2013年   108篇
  2012年   127篇
  2011年   129篇
  2010年   91篇
  2009年   96篇
  2008年   117篇
  2007年   104篇
  2006年   125篇
  2005年   84篇
  2004年   76篇
  2003年   59篇
  2002年   54篇
  2001年   47篇
  2000年   36篇
  1999年   37篇
  1998年   28篇
  1997年   29篇
  1996年   21篇
  1995年   25篇
  1994年   16篇
  1993年   22篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1985年   5篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有2170条查询结果,搜索用时 281 毫秒
91.
Mehmet zger  Zekai en 《Ocean Engineering》2008,35(17-18):1700-1706
The statistical behavior of wave energy at a site strongly depends on the wave characteristics. Wave energy converters fail to produce energy when there are no sufficiently available wave heights. Hence, evaluation of return periods and risk values of the minimum wave height becomes important for wave energy studies. A time index representing the minimum wave height is proposed here for ocean wave applications. Persistence plays a significant role in the calculation of return period and risk. Although ignoring the serial independence makes calculations easy, it leads to overestimations of the real status. In this paper, return periods and risk values are compared with each other by taking into consideration independent and dependent situations. Application of the study is achieved for the stations located in the Pacific Ocean and Gulf of Mexico.  相似文献   
92.
Winyu Rattanapitikon   《Ocean Engineering》2008,35(11-12):1259-1270
The significant wave representation method is the simplest method for computing the transformation of significant wave height across-shore. However, many engineers are reluctant to use this method because many researchers have pointed out that the method possibly contains a large estimation error. Nevertheless, Rattanapitikon et al. [Rattanapitikon, W., Karunchintadit, R., Shibayama, T., 2003. Irregular wave height transformation using representative wave approach. Coastal Engineering Journal, JSCE 45(3), 489–510.] showed that the wave representation method could be used to compute the transformation of root mean square wave heights. It may also be possible to use it for computing the significant wave height transformation. Therefore, this study was carried out to examine the possibility of simulating significant wave height transformation across-shore by using the significant wave representation method. Laboratory data from small- and large-scale wave flumes were used to calibrate and examine the models. Six regular wave models were applied directly to irregular waves by using the significant wave height and spectral peak period. The examination showed that three regular wave models (with new coefficients) could be used to compute the significant wave height transformation with very good accuracy. On the strength of both accuracy and simplicity of the three models, a suitable model is recommended for computing the significant wave height transformation. The suitable model was also modified for better predictions. The modified model (with different coefficients) can be used to compute either regular wave height or significant wave height transformation across-shore.  相似文献   
93.
Two inverted echo sounders were maintained on coastal and offshore sides of the Kuroshio south of Japan from October 1993 to July 2004. Applying the gravest empirical mode method, we obtained a time series of geostrophic transport. Estimated transports generally agree well with geostrophic transports estimated from hydrography. Their agreement with the hydrographic transports is better than that of transports estimated from satellite altimetry data. The geostrophic transport is expressed as the surface transport per unit depth multiplied by the equivalent depth. The geostrophic transport varies mostly with the surface transport and fractionally with the equivalent depth. Seasonal variation of the geostrophic transport has a minimum in March and a maximum in September, with a range of about one fifth of the total transport.  相似文献   
94.
介绍了通过布设足够密度且分布均匀的GPS水准联测点,建立庄河市辖区4086 km2的高精度、高分辨率的似大地水准面数学模型的原理和方法.  相似文献   
95.
For any specific wind speed, waves grow in period, height and length as a function of the wind duration and fetch until maximum values are reached, at which point the waves are considered to be fully developed. Although equations and nomograms exist to predict the parameters of developing waves for shorter fetch or duration conditions at different wind speeds, these either do not incorporate important variables such as the air and water temperature, or do not consider the combined effect of fetch and duration. Here, the wind conditions required for a fully developed sea are calculated from maximum wave heights as determined from the wind speed, together with a published growth law based on the friction velocity. This allows the parameters of developing waves to be estimated for any combination of wind velocity, fetch and duration, while also taking account of atmospheric conditions and water properties.  相似文献   
96.
A traversing system to measure bottom boundary layer hydraulic properties   总被引:1,自引:0,他引:1  
This study describes a new convenient and robust system developed to measure benthic boundary layer properties, with emphasis placed on the determination of bed shear stress and roughness height distribution within estuarine systems by using velocity measurements. This system consisted of a remotely operated motorised traverser that allowed a single ADV to collect data between 0 and 1 m above the bed. As a case study, we applied the proposed traversing system to investigate bottom boundary layer (BBL) hydraulic properties within Coombabah Creek, Queensland, Australia. Four commonly-employed techniques: (1) Log-Profile (LP); (2) Reynolds stress (RS); (3) Turbulent Kinetic Energy (TKE); and (4) Inertial Dissipation (ID) used to estimate bed shear stresses from velocity measurements were compared. Bed shear stresses estimated with these four methods agreed reasonably well; of these, the LP method was found to be most useful and reliable. Additionally, the LP method permits the calculation of roughness height, which the other three methods do not. An average value of bed shear stress of 0.46 N/m2, roughness height of 4.3 mm, and drag coefficient of 0.0054 were observed within Coombabah Creek. Results are consistent with that reported for several other silty bed estuaries.  相似文献   
97.
A large data set on ripples was collected and examined. A set of new formulas for the prediction of the ripple characteristics is proposed with an emphasis on the disappearance of the ripples. The ripple wavelength was observed to be proportional to the bottom wave excursion but also to be a function of the grain-related Shields parameter and wave period parameter introduced by Mogridge et al. (1994). The ripple steepness was found to be nearly constant for orbital ripples, and with a sharp decrease for suborbital ripples. Two empirical functions are added including the effects of the critical Shields parameters (inception of transport and inception of sheet flow), i.e. giving the boundaries for the ripple existence's domain. The proposed formulas yield better prediction capabilities compared to the previously published formulas, especially when ripples are washed out. The effect of the ripple characteristics on the roughness height and the calculation of the bed shear stress is also discussed. It appeared that the bed shear stress calculation is more sensitive to the empirical coefficient ar introduced in the estimation of the ripple-induced roughness height or to the limits of existence of the ripples than the ripple characteristics themselves.  相似文献   
98.
卫星高度计实现了对全球性或区域性的海洋参量的实时监测,TOPEX卫星高度计提供了迄今为止时间序列最长、数据质量最高的全球海面风速和有效波高的同步观测资料。利用TOPEX卫星高度计资料,分析了有效波高4m以上的巨浪在台湾岛周边海域的时空分布特征,结果表明台湾岛周边海域巨浪的分布具有明显的季节特征。每年平均有效波高最大值大多数出现在夏季,春季是1a中有效波高最小的季节,而秋季和冬季是巨浪出现频率最高的季节。波高大于6m的巨浪大都出现在台湾岛东部及东北部海域,在南部海域出现较少。  相似文献   
99.
����ԳƷ��ڵ��㶨λ�е�Ӧ��   总被引:1,自引:0,他引:1  
???GPSα????λ????????????????????μ?????????????λ??????????????ù????????????????????????????????棨???棩?????????????????????????????????α?????????????????????α???????????????????????λ??????????·??????????????????λ???????????????????????????????ν????????????????????????Ч????????λ?????????????????  相似文献   
100.
?????й?854??GPS/?????????EGM2008??EGM96?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????289??GPS/??????н????????????????????????????????????????????????EGM2008???EGM96???????á?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号