首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11211篇
  免费   2478篇
  国内免费   3899篇
测绘学   960篇
大气科学   4721篇
地球物理   2251篇
地质学   4694篇
海洋学   2223篇
天文学   350篇
综合类   853篇
自然地理   1536篇
  2024年   70篇
  2023年   209篇
  2022年   465篇
  2021年   549篇
  2020年   581篇
  2019年   702篇
  2018年   562篇
  2017年   563篇
  2016年   617篇
  2015年   661篇
  2014年   852篇
  2013年   932篇
  2012年   878篇
  2011年   874篇
  2010年   658篇
  2009年   838篇
  2008年   804篇
  2007年   897篇
  2006年   779篇
  2005年   723篇
  2004年   610篇
  2003年   485篇
  2002年   407篇
  2001年   380篇
  2000年   364篇
  1999年   343篇
  1998年   309篇
  1997年   235篇
  1996年   195篇
  1995年   206篇
  1994年   188篇
  1993年   155篇
  1992年   120篇
  1991年   80篇
  1990年   67篇
  1989年   52篇
  1988年   52篇
  1987年   18篇
  1986年   19篇
  1985年   21篇
  1984年   20篇
  1983年   11篇
  1982年   8篇
  1981年   9篇
  1980年   7篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
通过对青藏高原崇测冰帽一支18.70m冰芯中Cl^-、SO4^2-离子含量变化的分析表明,20世纪90年来Cl^-、SO4^2-离子含量在波动中呈下降趋势,两种离子的周期性波动变化相似,20世纪晚期比早期和中期的波动幅度小,总体上离子含量逐渐减少与温度在波动中上升相一致,但每一次温度的升高与离子含量的下降并非一一对应。陆源物质和青藏高原上的盐湖是冰芯中Cl^-、SO4^2-离子的主要贡献者。揭示了研究地区大气成分和环境变化与气候变化的关系及亚洲粉尘在全球环境变化中的源区地位。  相似文献   
952.
利用2002~2004年1~12月EC、T213天气数值产品的温度格点实时分析资料、预报资料以及贵州省黔西南州8个测站观测资料,从160个样本中筛选出相关较好的因子,利用多元回归统计模型,以及根据地理环境,天气形势分型造成的温度差值(ΔT)为逐步订正值,建立黔西南州分县温度预报方程。在2005年11月~2006年2月应用中取得较好效果,预报误差小于±3.0℃,平均误差1.3℃。  相似文献   
953.
Since 1970, the worldwide distribution, frequency and intensity of epidemics of dengue and dengue haemorrhagic fever (DHF) have increased dramatically. In Indonesia, as elsewhere, the geographic distribution and behaviour of the two main vectors – Aedes aegypti and Aedes albopictus – and the consequent transmission dynamics of the disease are strongly influenced by climate. Monthly incidence data were examined in relation to monthly data for temperature, rainfall, rainfall anomalies, humidity and the Southern Oscillation Index for 1992–2001. Focusing on eight provinces, significant Pearson correlations were observed between dengue/DHF incidence and at least one climate variable ( r  = ±0.2 to ±0.43; P  < 0.05). Multiple regression analyses showed that 12.9–24.5 per cent of variance in incidence was explained by two or three climate variables in each province ( P  < 0.1–0.01). Rainfall appears to be the principal climatic agent affecting the geographic distribution and temporal pattern of incidence while temperature appears to play a critical role in outbreak intensity. Wide regional and temporal variations in the strength and nature of the observed associations led to the identification of three groups of provinces where increases in dengue/DHF incidence were variously associated with increased rainfall, decreased rainfall and/or high susceptibility to climate variability. Although climatic factors play an important role in explaining the timing and intensity of dengue/DHF outbreaks, a wide range of other factors specific to local environments also appear to be involved – information that may assist in the prediction and mitigation of regional dengue/DHF outbreaks.  相似文献   
954.
955.
A new measurement technique enables the complex dielectric properties of the geological strata comprising the UG1–UG2 (Upper Group 1–Upper Group 2) unit of the Bushveld Complex in South Africa to be determined with unprecedented detail at radio frequencies (RF). Results of non-destructive laboratory measurements of representative diamond drill core samples from the UG1–UG2 unit are presented at 25 MHz. These data establish that the UG1 and UG2 chromitite layers are embedded in rock strata (norite, pyroxenite and anorthosite) which are translucent in the HF spectral band, whereas the chromitite layers themselves exhibit significant velocity contrast, making them good radar reflectors. The data presented here is useful for calibration of the radar system, and for predicting the range and resolution performance of borehole radars operating in both the hanging and footwalls of the economically important platiniferous UG2 reef.  相似文献   
956.
We invert S-wave velocities for the 3D upper-mantle temperatures, in which the position with a temperature crossing the 1300℃ adiabat is corresponding to the top of the seismic low velocity zone. The temperatures down to the depth of 80 km are then calculated by solving steady-state thermal conduction equation with the constraints of the inverted upper-mantle temperatures and the surface temperatures, and then surface heat flows are calculated from the crustal temperatures. The misfit between the calculated and observed surface heat flow is smaller than 20% for most regions. The result shows that, at a depth of 25 km, the crustal temperature of eastern China (500―600℃) is higher than that of western China (<500℃). At a depth of 100 km, temperatures beneath eastern and southeastern China are higher than the adiabatic temperature of 1300℃, while that beneath west China is lower. The Tarim craton and the Sichuan basin show generally low temperature. At a depth of 150 km, temperatures beneath south China, eastern Yangtze craton, North China craton and around the Qiangtang terrane are higher than the adiabatic temperature of 1300℃, but is the lowest beneath the Sichuan basin and the regions near the Indian-Eurasian collision zone. At a depth of 200 km, very low temperature occurs beneath the Qinghai-Tibet Plateau and the south to the Tarim craton.  相似文献   
957.
This study focuses on how the variability of land surface temperature and vegetation density at the SGP ARM-CART site changes over episodic (day to day) and seasonal time scales using AVHRR satellite data. Four drying periods throughout the year are analyzed. Land surface temperature had an erratic relationship with time exhibiting no deterministic pattern from day-to-day or season-to-season. Furthermore, it did not exhibit spatial pattern persistence. On the other hand, vegetation density had a consistent spatial pattern and temporal decay during average length drying periods (less than 7 days) as well as within a season. However, there were distinct differences in the seasonal pattern of variation between winter and growing seasons. In addition, the paper highlights a methodology to quantify the relationships that exist at the land surface between the primary parameter of interest and the controlling variables.  相似文献   
958.
Recent developments in long term landform evolution modelling have created a new demand for quantitative salt weathering data, and in particular data describing the size distribution of the weathered rock fragments. To enable future development of rock breakdown models for use in landscape evolution and soil production models, laboratory work was undertaken to extend existing schist/salt weathering fragmentation studies to include an examination of the breakdown of sub‐millimetre quartz chlorite schist particles in a seasonally wet tropical climate. Laser particle sizing was used to assess the impact of different experimental procedures on the resulting particle size distribution. The results reveal that salt weathering under a range of realistic simulated tropical wet season conditions produces a significant degree of schist particle breakdown. The fragmentation of the schist is characterized by splitting of the larger fragments into mid‐sized product with finer material produced, possibly from the breakdown of mid‐sized fragments when weathering is more advanced. Salinity, the salt addition method and temperature were all found to affect weathering rates. Subtle differences in mineralogy also produce variations in weathering patterns and rates. It is also shown that an increase in drying temperature leads to accelerated weathering rates, however, the geometry of the fracture process is not significantly affected. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
959.
960.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号