首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   46篇
  国内免费   92篇
大气科学   316篇
地球物理   3篇
地质学   1篇
海洋学   14篇
综合类   4篇
自然地理   6篇
  2024年   2篇
  2023年   13篇
  2022年   16篇
  2021年   28篇
  2020年   10篇
  2019年   20篇
  2018年   16篇
  2017年   7篇
  2016年   10篇
  2015年   14篇
  2014年   15篇
  2013年   22篇
  2012年   17篇
  2011年   12篇
  2010年   20篇
  2009年   20篇
  2008年   8篇
  2007年   12篇
  2006年   18篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   9篇
  2001年   12篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1996年   8篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
111.
应用天气学分析和物理量诊断方法,围绕暴雨形成的有利条件,对吉林省2012年7月上旬东北冷涡诱发的首场区域性暴雨中四平地区暴雨的形成机制进行详细分析和探讨,结果表明:冷涡为中间涡,暴雨发生在冷涡发展阶段,降水落区位于冷涡第一和第四象限,雨带呈明显经向带状分布,降水性质以稳定性降水为主。整个降水过程分三段,其中前两个阶段导致四平地区出现暴雨,且第一阶段低层有明显的辐合中心,对应降雨较强。四平地区暴雨发生前,冷涡移动缓慢,为区域性暴雨的产生提供了有利天气形势;850hPa切变线偏南,但整层有强垂直风切变,低层辐合、高层辐散以及整层垂直上升运动的明显增强,提供了中尺度动力抬升机制;850hPa以下有弱对流不稳定;850hPa不断加强的西南急流将水汽从东海、黄海、渤海一带源源不断地向该地区输送,提供了充分水汽供应。低层相对较弱的垂直上升运动以及中层无明显的下沉运动区,加上850hPa以下弱对流不稳定,不利于强对流天气产生,以稳定性降水为主。  相似文献   
112.
利用数值模式WRF进行二维飑线理想数值试验。通过改变初始场低层湿度和低层环境垂直风切变探讨了初始环境场对飑线在触发阶段与发展初期结构和强度的影响。低层湿度试验表明,增加低层湿度有利于初始启动阶段对流的发生从而使对流系统强度更强;飑线强度增加,对流上升运动增强,更有利于冷池前沿激发出新生对流单体,系统发展更快;同时激发更多降水,冷池强度增强。低层环境垂直风切变试验表明,在飑线触发阶段,更强的环境垂直风切变使对流主体前倾趋势更大,对对流的触发有阻碍作用;冷池和环境垂直风切变的相互作用被认为是飑线发展的重要机制,基于RKW理论,在飑线发展初期,近地面冷池相对较弱,在更弱的环境垂直风切变作用下更容易使对流结构呈直立状态从而产生更强和更深的上升运动,飑线强度增强。  相似文献   
113.
随着航空事业的发展,飞机性能得到提高,但低空风切变仍然对航空安全构成威胁,为了解其发展规律,就昆明长水机场2017年2月23日发生的四次低空风切变进行了特征分析,揭示了风切变产生的水平及垂直风场的调整过程。分析发现,昆明机场特殊的地理位置造成冷锋推进速度缓慢;冷锋过境时,跑道两端出现风向和风速的不连续,造成跑道两端风向和风速均无法满足运行标准,导致跑道关闭;冷锋过境后,在跑道上60m决断高度附近形成水平风的垂直风切变,造成飞机复飞,对飞行安全造成较大影响。跑道道面上的风切变空间尺度小、存在时间长、而且风切变发生高度较低,并随时间变化,结合自动观测系统及风廓线雷达能更好的了解冷锋型风切变的特征,可以为航空飞行安全提供更精细化的服务。   相似文献   
114.
低空风切变是飞机起飞和着陆阶段威胁飞行安全的主要危险天气,分为水平风的垂直切变、水平风的水平切变、垂直气流切变三种类型.低空风切变主要是由大气运动的变化所造成,强对流天气、锋面天气、低空急流天气都可能引起低空风切变;另外,特别的地理环境也是不容忽视的因素.  相似文献   
115.
西北太平洋热带气旋快速增强与环境垂直风切变统计分析   总被引:1,自引:0,他引:1  
谢礼江  邱新法  王伟 《热带地理》2013,33(3):242-249
利用1990-2009年美国联合台风警报中心整编的热带气旋(TC)最佳路径资料和NCEP/NCAR再分析等压面流场资料,在分析西北太平洋TC每24 h强度变化统计特征的基础上,确定了西北太平洋TC快速增强的阈值,对比不同阈值条件下,TC快速增强初始时刻的强度,TC快速增强发生的季节变化和空间分布特征,进一步研究环境垂直风切变与TC快速增强的关系。结果表明:在西北太平洋海区,当TC强度24 h变化达到样本累积百分率的88%、90%、93%和96%的概率时,对应的强度变化值分别为25 KT、30 KT、35 KT和40 KT,定义它们为TC快速增强的阈值。该阈值越大,快速增强初始时刻的强度也越强。60%左右的TC快速增强发生在8-10月,TC快速增强的空间分布集中于125°-150°E、10°-25°N的矩形区域内。对流层不同层次的垂直风切变与TC快速增强的关系有差异,TC快速增强阈值为40 KT时对应的对流层中上层(200~500 hPa)、对流层中下层(500~850 hPa)和对流层(200~850 hPa)的垂直风切变值的概率分布显示:当垂直风切变≥12 m/s时,分别只有9.7%、1.5%、11.1%的TC可以快速增强;且其与TC快速增强时强度变化的相关系数分别为-0.15、0、-0.04,以200~500 hPa的最为显著,表明对流层中上层垂直风切变对TC强度增强的抑制作用最明显。在TC快速增强阈值为40 KT的初始时刻,将200~850 hPa垂直风切变划分为东风切变和西风切变的统计表明,57%的TC在东风切变的环境下可以快速增强。  相似文献   
116.
台风“达维”迅速加强数值模拟研究   总被引:1,自引:0,他引:1  
官晓军 《气象科技》2012,40(2):241-248
利用WRF模式(V311)对0518号台风“达维”(Damrey)进行了72 h的数值模拟。重点分析了影响台风强度迅速加强的可能机制,结果表明:①缓慢加强阶段,东风波与台风高层环流相互作用形成一条东北—西南走向的外流通道,加强台风高层辐散流出,有利于台风强度加强;垂直风切变在积分前12 h减小,台风迅速加强与垂直风切变减小间存在滞后性。②迅速加强阶段,低层指向台风中心的水汽通量大大增加;海表面热通量、潜热通量和水汽通量持续增强,海表面潜热通量对台风的能量贡献远大于热通量。③台风眼壁附近的条件性对称不稳定机制激发斜升气流,倾斜涡度发展引起中心附近相对涡度增大,台风整体强度得到加强。  相似文献   
117.
1980—2009年我国龙卷事件变化   总被引:1,自引:0,他引:1       下载免费PDF全文
根据1980—2009年我国龙卷事件的变化特征,初步探讨了20世纪90年代以后龙卷事件显著减少的特征及原因。结果表明,1980—2009年龙卷事件呈现明显减少的趋势,20世纪80年代最多,90年代以后明显减少,尤其是夏季(7—8月),在我国东部地区减少最明显。对龙卷高发时段7—8月06时(UTC)对流有效位能(ECAPE)与深层垂直风切变(S06)以及二者乘积变量(ES)的分析表明:ECAPE和S06是影响龙卷的两个重要因子,ES的高值中心更好地对应于龙卷事件发生的集中区。地面气温的变化会影响ECAPE的变化。1980—2009年,我国华北平原地区7—8月S06明显下降是20世纪80年代以后我国华北地区龙卷事件减少的主要原因。  相似文献   
118.
利用富川县虎头测风塔的实测资料,计算分析了富川地区的风能资源参数。结果表明,该地区的风能资源丰富,年平均风速、风功率密度和有效风速小时数都随高度的增高而增大;秋冬季是该地区风能资源利用的最佳时期,夏季次之,春季最差;而白天特别是中午一般是每天资源量最好的时段;该地区的主导风向集中,且最多风向与次多风向完全相反,各风向上的风能分布规律与风向频率分布一致,并且比风向频率分布更集中在主导风向上。  相似文献   
119.
本文应用常规天气图资料、地面加密降水观测资料、探空资料及美国NCEP/NCAR再分析资料,对2010年7月19日山东飑线过程和2011年7月26日河北飑线过程进行了分析研究。结果表明, 两次过程的相同点是:都位于500 hPa高空槽前;两次飑线过程均产生了雷雨大风和短时强降水天气;湿层均较深厚;下沉有效位能均较大。不同点为:2010年7月19日山东飑线过程属于有明显垂直风切变环境中的飑线;对流不稳定能量相对较低。而2011年7月26日河北飑线过程属于风垂直切变相对小的环境中的飑线;对流不稳定能量很大。除了雷雨大风和短时强降水天气之外还产生了冰雹。  相似文献   
120.
选取2002年1月至2010年6月银川河东机场气象台收到的有关低空风切变的话音方式的航空器空中报告,对本场附近35起飞机报告的因风切变导致复飞或返航事件的气候特征及发生低空风切变的大气环流形势进行了统计分析,初步认为本场低空风切变易发生在春季(3~5月),11:00~14:59及16:00~17:59时段,此时正是本场...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号