首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   88篇
  国内免费   110篇
测绘学   50篇
大气科学   367篇
地球物理   17篇
地质学   264篇
海洋学   23篇
综合类   27篇
自然地理   120篇
  2024年   9篇
  2023年   27篇
  2022年   32篇
  2021年   43篇
  2020年   27篇
  2019年   28篇
  2018年   28篇
  2017年   30篇
  2016年   35篇
  2015年   18篇
  2014年   47篇
  2013年   38篇
  2012年   45篇
  2011年   36篇
  2010年   46篇
  2009年   41篇
  2008年   27篇
  2007年   36篇
  2006年   20篇
  2005年   34篇
  2004年   26篇
  2003年   15篇
  2002年   13篇
  2001年   31篇
  2000年   18篇
  1999年   14篇
  1998年   19篇
  1997年   11篇
  1996年   9篇
  1995年   12篇
  1994年   3篇
  1993年   11篇
  1992年   14篇
  1991年   11篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1936年   1篇
排序方式: 共有868条查询结果,搜索用时 15 毫秒
11.
乌鲁木齐河流域季节积雪的基本特征   总被引:5,自引:0,他引:5  
张志忠  杨大庆 《冰川冻土》1992,14(2):129-133
  相似文献   
12.
祁连山区风吹雪对积雪质能过程的影响   总被引:1,自引:3,他引:1  
李弘毅  王建  郝晓华 《冰川冻土》2012,34(5):1084-1090
风吹雪是山区积雪水文过程的重要组成部分. 采用祁连山区冰沟流域2008年积雪期观测数据, 通过对风吹雪实地观测分析、风吹雪的发生概率、风吹雪迁移以及风吹雪升华等分析, 从野外观测、计算模拟两个方面对祁连山区风吹雪质能过程进行了详细探讨. 结果表明: 位于流域海拔较高处(海拔4 146 m)的研究区垭口站, 风吹雪现象较为显著, 因之造成的积雪重新分布极为严重. 垭口站风吹雪频发于冬季及初春融雪未发生时, 积雪在风速作用下迁移量较大; 而进入融雪期之后, 因气温上升、雪面融化以及再冻结, 风吹雪发生概率急剧减小. 风吹雪在积雪升华中占有较大比重, 2008年积雪期, 垭口站风吹雪升华估算值约占积雪升华(包括雪面升华)的41.5%.  相似文献   
13.
祁连山不同植被类型对积雪消融的影响   总被引:6,自引:1,他引:6  
为研究祁连山植被对积雪消融的影响, 利用人工调查积雪深度逐日变化量和积雪盖度变化, 并结合空气雪面感热通量(SH)观测, 对祁连山水源林生态站排露沟流域海拔2 600~2 700 m青海云杉林、灌丛林、林缘、阳坡草地在2003-2007年的积雪消融进行了研究, 每年的观测从10月降雪开始到翌年5月积雪消融完结束, 共获取数据134 400个. 结果表明: 当SH<0时, 积雪消融停止;当SH>0时, 积雪消融开始;植被可以减缓积雪消融速率, 有植被的地方消融速率减慢, 反之则加快;不同植被消融速率大小顺序为草地>林缘>灌木林>乔木林;同一植被、不同坡向消融速率不同, 半阳坡云杉林>半阴坡云杉林>阴坡云杉林. 积雪含水率随气温升高而增大, 1月融化积雪占整个积雪的5%, 2月增大到28%, 大量积雪在3月消融, 占55%. 从坡位看, 下坡消融速率最大;在一个垂直带上, 低海拔消融速率大于高海拔. 温度是影响积雪消融的主要因子, 积雪消融速率随温度升高而增大, 反之则减小.  相似文献   
14.
利用北疆地区2007/2008-2009/2010年度积雪季(12月至次年2月)的AMSR-E降轨19 GHz与37 GHz波段的水平极化亮温数据, 结合北疆地区45个气象台站的实测雪深数据, 建立了北疆地区基于AMSR-E亮度温度数据的雪深反演模型, 并对模型的精度进行评价. 结果显示: 雪深在3~10 cm时, 模型反演的雪深值负向平均误差为-5.1 cm, RMSE值为6.1 cm; 雪深在11~30 cm时, 模型反演雪深值的平均误差仅为2.6 cm, RMSE、 正向平均误差、 绝对平均误差均较小; 雪深大于30 cm时, 模型反演的各项误差较大. 用合成方法反演北疆地区2006/2007-2010/2011年度5个积雪季的平均雪深分布和最大雪深分布, 结果显示北疆地区积雪主要分布于北部阿尔泰山和南部天山一带, 其中阿勒泰地区所占比重最大, 中部的准噶尔盆地腹地、 克拉玛依地区雪层较浅.  相似文献   
15.
基于遥感的冰川信息提取方法研究进展   总被引:6,自引:6,他引:6  
彦立利  王建 《冰川冻土》2013,35(1):110-118
对冰川监测中常用的遥感卫星、 传感器及冰川信息提取方法等进行了综合评价, 常规方法中普遍认为比值法的精度最高, 新产生的面向对象分类和雷达干涉测量方法虽一定程度上提高了冰川提取精度, 但冰碛物仍是自动识别的难点. 针对表碛覆盖冰川虽发展了一些自动、 半自动的方法, 但这些方法还不够成熟、 不具有通用性. 积雪、 冰碛物和地面验证仍是冰川自动提取存在的重要问题, 发展更先进、 更成熟的方法是冰川研究的重要方向, 未来可以尝试采用粗糙集理论及ICESAT卫星波形提高冰川信息提取的精度.  相似文献   
16.
利用青海玉树隆宝地区2014年12月积雪升华过程的观测资料,分析了积雪升华过程中高寒湿地陆气相互作用特征及积雪深度对陆气相互作用的影响。结果表明:在降雪和积雪升华过程中,高寒湿地浅层土壤温度在短时期内有所升高,而深层土壤温度和土壤体积含水量对降雪过程的响应不敏感。积雪升华过程中净辐射、感热通量和潜热通量的日平均值增加,向上短波辐射的日平均值减少。积雪逐渐升华导致地表吸收的能量增加,同时地表向大气传递的能量也随之增加。随着积雪的逐步升华,感热占比和潜热占比逐渐升高,而土壤热通量占比和热储存占比逐渐降低。积雪深度增加会导致地表反照率和地表比辐射率增大,感热输送系数减小。  相似文献   
17.
《冰川冻土》2012,34(2)
传统的度日因子模型很难分辨在结冻期土壤每日结冻和解冻的过程,而日小时积温可以区分正积温和负积温对土壤冻结过程的影响.利用北疆地区1951-2010年气象站数据和决策树算法,分析计算日小时积温及表层5cm和10cm土壤冻结状态数据及日小时积温对季节性冻土冻结现象的影响.结果表明:在北疆范围年小时正积温以每年平均160℃增长,而年小时负积温以每年平均153℃减少.季节性冻土发生冻结现象所需的临界值分布与北疆地区气候和土壤分布基本一致,但仍存在空间差异性.北疆地区5cm土壤结冻所需的日小时负积温为-50℃以下,而5cm到10cm土壤结冻所需日小时负积温的平均值差值为-15℃左右.与日最低气温和日平均气温作为土壤结冻判据相比,日小时积温临界值作为判据可获得较高的精确度.在昌吉地区和阿勒泰地区冻土的平均深度随着日小时负积温临界值的增加而减少.  相似文献   
18.
冰川/积雪-大气相互作用研究进展   总被引:1,自引:9,他引:1  
杨兴国  秦大河  秦翔 《冰川冻土》2012,34(2):392-402
冰川和积雪是冰冻圈的重要组成部分,在全球或区域气候系统中起着极其重要的作用.开展冰川/积雪-大气相互作用研究,是研究冰冻圈物理过程及其对气候系统反馈作用的必然需求,也是研究冰川/积雪对气候变化响应的有效手段,同时还可为全球(区域)气候和水文模式提供冰川/积雪面的地表特征参数.近一个世纪以来,在冰川/积雪面辐射特征、能量通量计算方法和平衡特征等方面开展了许多观测试验和理论研究,并取得了卓有成效的研究结果.但是在准确获取辐射通量、研发普适性较强的反照率参数化方案、复杂地形条件下能量通量的计算,以及发展分布式能量平衡模式等方面尚存在许多不确定性,仍面临许多技术难点,也是未来的研究重点.  相似文献   
19.
河套及其邻近不稳定积雪区积雪日数时空变化规律研究   总被引:3,自引:8,他引:3  
惠英  李栋梁  王文 《冰川冻土》2009,31(3):446-456
利用河套及其邻近地区(30°~43°N,102°~120°E)240个地面气象观测站1951-2006年的积雪日数资料,采用EOF/REOF进行分解,分析了该区积雪的时空异常分布情况.结果表明:河套及其邻近地区积雪日数有3个主要的分布型,第1种类型为全区一致地偏多(偏少)型,相似年份有13 a;第2种类型为南多(少)北少(多)的南北相反分布型,相似年份有7 a;第3种类型为东多(少)西少(多)的东西相反分布型,相似年份有2 a.对年积雪日数进行REOF分解可将研究区域分为6个气候分区.利用Morlet小波分析表明,研究区域年积雪日数变化存在准18 a周期.在全球变暖的大背景下,研究区域的年积雪日数整体呈减少的趋势,减少最显著的在高纬度和高海拔地区.  相似文献   
20.
利用中国陆地生态系统通量观测研究网络的玛曲站观测的一次降雪过程的资料,对青藏高原东部边缘冬季的降雪、积雪过程的辐射特征进行了分析.研究结果表明;积雪期晴天和降雪过程的向上短波辐射的峰值分别约为降雪前晴天的3和2倍.无积雪晴天地表反射率主要分布在0.175~0.36,新雪地表反射率主要分布在0.8~0.9.大气逆辐射变化较小,降雪过程的最大,积雪时的最小.地表长波辐射则为降雪前最大,降雪时最小.积雪覆盖的晴天比无积雪时的净辐射变化幅度减小,且早上由负转正的时间推迟.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号