首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   174篇
  国内免费   318篇
测绘学   37篇
大气科学   673篇
地球物理   48篇
地质学   13篇
海洋学   282篇
天文学   4篇
综合类   17篇
自然地理   41篇
  2024年   7篇
  2023年   21篇
  2022年   36篇
  2021年   40篇
  2020年   45篇
  2019年   38篇
  2018年   27篇
  2017年   32篇
  2016年   21篇
  2015年   34篇
  2014年   62篇
  2013年   42篇
  2012年   69篇
  2011年   42篇
  2010年   41篇
  2009年   42篇
  2008年   45篇
  2007年   46篇
  2006年   29篇
  2005年   36篇
  2004年   27篇
  2003年   37篇
  2002年   53篇
  2001年   33篇
  2000年   24篇
  1999年   15篇
  1998年   19篇
  1997年   28篇
  1996年   20篇
  1995年   16篇
  1994年   18篇
  1993年   16篇
  1992年   16篇
  1991年   12篇
  1990年   13篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1115条查询结果,搜索用时 31 毫秒
91.
NASA/Goddard长波辐射方案在GRAPES_Meso模式中的应用研究   总被引:2,自引:0,他引:2  
张梦  王宏  黄兴友 《大气科学》2014,38(3):603-614
本文将NASA(National Aeronautics and Space Administration)/Goddard长波辐射方案引入到GRAPES_ Meso(Global/Regional Assimilation and PrEdiction System_Meso)模式中,对2006年4月中国地区进行了一个月的模拟试验,并与相应的NCEP(National Centers for Environmental Prediction)再分析资料进行了对比分析。试验结果表明:在模拟区域内,使用GRAPES_Meso模式进行24 h、48 h预报得到的晴空大气顶向外长波辐射通量(the clear sky outgoing longwave radiation flux,OLRC)、地面接收到向下长波辐射通量(the clear sky downward longwave radiation flux at ground,GLWC)分布形势与NCEP再分析资料具有较好的对应关系;模式预报24 h、48 h OLRC和NCEP再分析资料月平均误差百分比控制在-10%~+10%以内,GLWC月平均误差百分比比OLRC略大,但总体上两者误差都在合理和可接受范围之内。OLRC和GLWC 24 h、48 h的预报和NCEP再分析资料的逐日距平相关系数及标准误差的对比显示,模式24 h预报OLRC、GLWC的距平相关系数月平均值分别为0.96、0.98,标准误差月平均值分别为24.54 W m-2、27.23 W m-2;模式48 h预报OLRC、GLWC的距平相关系数月平均值分别为0.9521、0.9804,标准误差月平均值分别为22.43 W m-2、27.64 W m-2。总体上,模式24 h、48 h预报OLRC和GLWC的距平相关系数都在0.93以上,标准误差都在31 W m-2以内,且GLWC预报和NCEP再分析资料的相关性比OLRC略好,OLRC预报与NCEP再分析资料的的标准误差比GLWC略小。通过和RRTM长波辐射方案对比可知,两者的预报水平基本一致。本文研究结果表明,引入NASA/Goddard长波辐射方案后的GRAPES_Meso模式整体上能够较好地预报OLRC和GLWC,该辐射方案可以作为模式GRAPES_Meso的备选辐射方案之一。  相似文献   
92.
QuikSCAT卫星散射计矢量风检验及南海月平均风场特征分析   总被引:4,自引:1,他引:3  
采用中国科学院南海海洋研究所2008年建设的,西沙海洋观测研究站上的自动气象站实测数据,对亚太数据研究中心提供的近实时QuikSCAT卫星遥感风场资料(2008年4月6日—12月31日)进行了检验和统计特征分析,得出:这两者风速的相关系数为0.86,平均偏差为-1.50 m/s,均方根误差为1.71 m/s,表明QuikSCAT卫星遥感风场资料在南海具有很高的适用性。在此基础上,利用QuikSCAT卫星遥感的月平均风场资料分析了南海月平均风场特征。结果表明:(1)南海季风10月到次年3月盛行东北风,6—8月盛行西南风,4、5、9月为季风转换季节;(2)存在两个平均风速大值中心,一个位于南海南部(10°N,108°E)附近,另一个位于台湾海峡附近,其位置和强度会随着季节变化而变动。  相似文献   
93.
针对不同的防风标准在翻斗雨量计观测时对风场变形误差的防护作用,从降水总量随风速波动的变化、设备间的均方差及其相关系数和观测时间灵敏度等几个方面对观测数据进行分析。数据分析表明不同的防风标准翻斗式雨量计对风场变形误差的防护作用存在一定的差异,其中SMALLDIFR具有更高的时间灵敏性,在雨量比较大时,偏斜式雨量计更优。  相似文献   
94.
利用常规资料、地面加密自动观测资料、NCEP/NCAR的1°×1°每6h再分析资料及多普勒雷达资料,对2011年6月16日(简称6.16过程)及2008年7月31日(简称7.31过程)发生在粤东南两次副高边缘特大暴雨进行对比分析。结果表明:6.16过程主要是受高空短波槽和偏南风急流共同影响而产生的,较厚的暖云层、深厚的湿层等使该过程降水范围更广;7.31过程主要是受对流中层扰动诱发产生的,为局地性强降水。雷达回波均表现为强的反射率因子,回波发展迅速且移动缓慢;6.16过程回波图上出现有界弱回波区(BWER)等超级单体风暴特征。  相似文献   
95.
The principal purpose of this paper is to extract entire sea surface wind's information from spaceborne lidar, and particularly to utilize a appropriate algorithm for removing the interference information due to white caps and subsurface water. Wind speeds are obtained through empirical relationship with sea surface mean square slopes. Wind directions are derived from relationship between wind speeds and wind directions im plied in CMOD5n geophysical models function (GMF). Whitecaps backscattering signals were distinguished with the help of lidar depolarization ratio measurements and rectified by whitecaps coverage equation. Subsurface water backscattering signals were corrected by means of inverse distance weighted (IDW) from neighborhood non-singular data with optimal subsurface water backscattering calibration parameters. To verify the algorithm reliably, it selected NDBC's TAO buoy-laying area as survey region in camparison with buoys' wind field data and METOP satellite ASCAT of 25 km single orbit wind field data after temporal-spa tial matching. Validation results showed that the retrieval algorithm works well in terms of root mean square error (RMSE) less than 2m/s and wind direction's RMSE less than 21 degree.  相似文献   
96.
利用来自ECMWF的ERA-40风场资料,采用EOF、线性回归等方法,分析了1958-2001年期间印度洋-南海海表风场的时空分布特征。结果表明:(1)该海域背景特征存在两个比较明显的高值区:索马里附近海域、南海海域,分别反映的是夏季索马里附近海域强劲的西南季风、南海冬季频繁的冷空气。(2)该海域海表风场的第二模态在空间分布特征上,北印度洋中纬度海域与赤道附近海域呈反位相分布,40°S 与60°S 海域也呈反位相分布;第三模态则整个北印度洋与南印度洋呈反位相分布。(3)1958-2001年期间,印度洋-南海的海表风速整体上呈显著性逐年线性递增,尤其以1975-1980年期间的递增趋势最为强劲,1975年的年平均风速为近44年的最低点。  相似文献   
97.
南海冬季一次海面大风天气的WRF模式预报检验   总被引:1,自引:0,他引:1  
为寻找出适合南海冬季海面大风天气预报的边界层参数化方案,利用中尺度气象模式WRF中9种边界层方案(YSU、MYJ、QNSE-EDMF、MYNN2、MYNN3、ACM2、BouLac、UW、GBM),对2012年12月29-31日的大风过程进行预报,并用最终分析资料(FNL)检验10 m风场预报。结果表明:风速风向预报的整体平均偏差相当,风向预报的均方根误差较风速大;风速风向与实况的相关随着预报时间增加,整体呈现下降趋势;各方案对海陆交界风速预报普遍偏大2 m/s以上,而在远离陆地的海域偏差较小;YSU方案对北部湾、东沙群岛、西沙群岛、南沙群岛4个海区风场的变化趋势均能较好预报;整体而言,南海大部分海域的预报偏差较小,YSU、MYNN2、MYNN3方案对风速预报较好,ACM2方案对风向预报较好。  相似文献   
98.
S波段天气雷达在夜间往往能探测到大量晴空回波。根据生物随风迁飞迁徙的定向运动特征,结合L波段无线电探空数据与2018年3—10月北京S波段天气雷达数据,分析晴空回波在不同时段、不同风向下的变化,讨论晴空回波产生原因。通过天气雷达数据发现,晴空回波的反射率因子在6—8月初明显小于5月与9月,呈回波强度低谷,同时在5月与9月晴空回波高度可达2 km以上。通过与100 m,750 m和1.5 km高度的探空风向数据对比,反射率因子平均值未展现生物定向迁飞活动所导致的强度变化特征,反射率因子分布不随风向发生明显的季节性变化。与探空数据对比发现,温度垂直递减率与水平风切变大小的变化趋势与组合反射率因子变化趋势一致,认为北京地区晴空回波主要由大气边界层湍流造成。  相似文献   
99.
利用2017—2019年中国气象局大气探测试验基地Ka波段云雷达资料,结合地面自动气象站、激光云高仪资料,从强度、速度、线性退极化比以及晴空回波高度等方面,分析晴空回波垂直结构和变化特征。基于激光和微波对粒子半径和数密度散射的差异,区分云和晴空回波。结果表明:Ka波段云雷达探测到的晴空回波在边界层主要包含层状湍流回波和点状昆虫回波,且回波顶高在3000 m以内。晴空回波强度和高度具有明显的季节和日变化特征,冬季回波顶高较低,夏季回波顶高较高,与地面气温具有很好的相关性,每年的1,2,11,12月几乎没有晴空回波,而7月和8月回波顶平均高度最高。晴空回波反射率因子为-40~-15 dBZ,其中层状湍流回波反射率因子概率密度峰值处反射率因子为-35 dBZ,点状昆虫回波反射率因子概率密度峰值处反射率因子为-30 dBZ。晴空回波垂直移动速度为-1.5~+0.5 m·s-1,整体呈下沉运动。层状湍流回波线性退极化比较点状昆虫回波稍大,一般为-10~-5 dB,点状昆虫回波线性退极化比一般为-15~-8 dB。  相似文献   
100.
不同环境风场条件下两次华南西部低涡暴雨个例对比分析   总被引:1,自引:0,他引:1  
利用常规观测资料、FY 2C卫星TBB资料、自动站降水量以及NCEP/NCAR再分析资料,对2009年7月3-4日(简称“09.7”)和2008年6月1 6 1 7日(简称“08.6”)两次发生在华南西部的低涡暴雨过程进行对比分析,结果表明:(1)低涡是两次暴雨过程的直接影响系统,“09.7”过程伴随西南低空急流,“08.6”过程无低空急流配合,中尺度辐合可能在两次强降水过程中有着直接的触发作用.(2)“09.7”过程的低层辐合强度及上升运动强度明显强于“08.6”过程.“09.7”过程较“08.6”过程,暖平流强度明显偏强,等温度平流线也较密集.(3)相比“08.6”过程,“09.7”过程水汽净流量更大,这是西南低空急流将充足水汽往暴雨区输送的结果.(4)“09.7”和“08.6”两次暴雨过程均与高空西风急流南侧的垂直环流圈密切相关,“09.7”过程由于低空有急流存在,上升运动维持时间长,降水强度大,历时长,“08.6”过程广西境内低空无急流,上升运动维持时间短,降水强度偏弱,历时短.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号