首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1045篇
  免费   281篇
  国内免费   405篇
测绘学   4篇
大气科学   1541篇
地球物理   13篇
地质学   34篇
海洋学   56篇
综合类   23篇
自然地理   60篇
  2024年   23篇
  2023年   85篇
  2022年   94篇
  2021年   110篇
  2020年   89篇
  2019年   92篇
  2018年   56篇
  2017年   43篇
  2016年   50篇
  2015年   56篇
  2014年   87篇
  2013年   82篇
  2012年   78篇
  2011年   71篇
  2010年   62篇
  2009年   61篇
  2008年   74篇
  2007年   77篇
  2006年   77篇
  2005年   51篇
  2004年   53篇
  2003年   39篇
  2002年   29篇
  2001年   28篇
  2000年   20篇
  1999年   18篇
  1998年   40篇
  1997年   23篇
  1996年   21篇
  1995年   15篇
  1994年   9篇
  1993年   9篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
排序方式: 共有1731条查询结果,搜索用时 15 毫秒
31.
1804号台风"艾云尼"给广州带来了近10年最强的台风降水,对期间主要出现的两次强度明显不同的强降水过程的成因进行了对比分析,结果表明:(1)第1段强降水主要是受"艾云尼"外围环流影响,第2段转受其本体环流影响,深厚的低空急流为强降水的产生提供了较好的水汽和不稳定能量条件;(2)第2段强降水过程高低空辐散辐合强度均增大到第1段过程的1.5倍以上,为第2段强降水的增强提供了更好的动力条件;(3)第2段强降水过程水汽通量及辐合强度较第1段明显增强,为降水的增强提供了更好的水汽条件;(4)强的θse平流输送及其随高度的减弱是不稳定能量维持的重要原因.  相似文献   
32.
利用四川地区自动气象站逐小时降水观测资料,分析了2010~2019年5~9月短时强降水事件24h累计降水量、频次和强度的时空分布特征,探讨了短时强降水事件发生的频次、极值分布及其与地形、海拔高度等的关系。结果表明:四川地区平均24h累计降雨量基本在50mm以上,盆地东北部、西南部、南部及阿坝州东部甚至超过100mm,最大值出现在广安,达175mm。四川地区短时强降水事件开始时间的日变化特征表现为“V”型结构的夜间峰值位相,事件持续时段多为傍晚至凌晨,时长可达10h以上,最长甚至可持续22h。在强降水事件极值的日变化上,极大值频次和降水量呈单峰结构,在03时达到最大,其后逐渐减小至15时达到谷值,而后再次增大;降水强度呈弱双峰结构,分别在04时和16时达到谷值,13时和18时达到峰值,其日变化呈“增-减-增-减”的特征。四川短时强降水事件与复杂地形有密切的关系,5~6月事件活跃区在四川盆地中部,7月在盆地西部的龙门山脉一带,8月在雅安、乐山附近,9月在盆地北部且频次明显减少;短时强降水事件的最大小时雨强可达80mm以上,出现在7~8月的盆地西部龙门山一带和南部地区。短时强降水事件随着海拔高度的增加,发生频次和日数逐渐减少,海拔2000m以上地区基本无强降水发生日出现( 峨眉山气象站例外)。   相似文献   
33.
利用西藏自治区昌都市及周边18个气象观测站1989~2018年降水资料和NCEP/NCAR再分析资料,首先进行强降水个例筛选,在大气环流分型的基础上,应用后向轨迹模型分析了暴雨和大雨在不同环流形势下的水汽输送轨迹。结果表明:昌都产生强降水的大气环流形势分为高原低涡、高原槽及高原切变线3种类型,其中以高原切变线型为主,而降水强度最大的是高原槽型。不同环流形势下暴雨发生时三个等压面的水汽轨迹方向基本一致,均以偏南气流为主,水汽来源相对集中,容易在短时间内造成强降水;而大雨发生时三个等压面的水汽轨迹多以偏南气流为主,与暴雨相比,水汽来源较为分散且水汽条件较差。夏季昌都的水汽来源主要以印度洋、孟加拉湾、阿拉伯海、南海为主,最远可以追溯到大西洋。   相似文献   
34.
曹瑜  游庆龙  蔡子怡 《冰川冻土》2021,43(5):1290-1300
采用一元线性回归、合成分析等方法对1961—2019年青藏高原中东部71个站点夏季强降水与大尺度环流进行了分析,研究结果表明,近年来青藏高原中东部强降水呈增加趋势。在强降水高值年时,青藏高原中东部水汽辐合加强,中纬度西风和热带地区东风带向极移动加强,高层辐散流场、水汽输送以及上升运动条件,共同作用导致了强降水的产生。在强降水低值年时,青藏高原中东部大部水汽异常辐散,区域内的季风水汽输送减弱,西风带和东风带均向赤道移动减弱,高层为气旋式环流异常。通过风暴轴、波作用通量和E-P通量进一步分析发现,当北大西洋地区风暴轴偏强(偏弱)时,瞬变扰动作用加强(减弱),使得北大西洋地区高纬度西风加速(减弱),急流出口区的不稳定能量激发了欧洲西北部的异常反气旋(异常气旋),并通过Rossby波列调控季风输送,导致了青藏高原中东部地区强降水的变化。  相似文献   
35.
选取中国东北区域162个气象站1961—2015年地面气温资料,采用多种统计方法分析了近55 a东北地区气温的一致性和局地性演变特征。结果表明:东北地区年平均气温存在较为良好的空间一致性,"全区一致型"气候类型为东北地区最主要气候形态;第一旋转载荷向量时间系数呈上升趋势亦存在较明显2—7 a的周期,说明北部地区气温受全球变暖、ENSO等大尺度气候背景影响显著; 1961—2015年北部区域以0. 34℃/10 a的升温率高于南部区域的0. 26℃/10 a,但1980年后增温趋势减慢;年平均气温的概率曲线随年代整体向高值区移动,北部区域冬季增暖较为显著,南部区域冬夏均较为明显,春秋季节可能有缩短趋势。  相似文献   
36.
利用高密度地面自动站逐小时降水观测资料,分析了河南省2010—2015年雨季(5—9月)短时强降水(flash heavy rain, FHR)的时空分布特征。主要结果如下:河南省FHR集中发生在7、8月,其中7月最多,8月次之;河南雨季FHR量、降水贡献和发生频率的局地差异明显,主要存在4个大值区,即豫北黄河以北地区、豫东商丘地区、豫西南伏牛山以南以东地区、豫南沿淮及其以南地区;地形对降水的增幅作用显著,且主要是通过增加FHR发生频次实现的;FHR频次日变化呈明显的双峰结构,傍晚至凌晨的前半夜为FHR频发时段;4个大值区内FHR频次日变化差异明显,如黄河以北地区其日变化幅度较大、呈单峰型,而沿淮及其以南地区其日变化幅度较小、呈持续活跃型;大部分FHR前后都伴随着连续降水,降水过程的持续时间主要在1~8 h之间,持续时间大于等于3 h的过程主要位于两个与地形密切相关的高频集中区,即伏牛山以东支脉的喇叭口地形区和沿淮及其以南地区。  相似文献   
37.
利用常规观测资料、NCEP再分析资料、卫星以及雷达资料对2015年8月16—18日影响川渝地区的一次持续性大暴雨过程进行了分析。结果表明:在亚洲中高纬和低纬相对稳定的环流背景下,两次高原涡东移、两次冷空气南下侵入四川盆地共同促进了西南低涡生成发展,造成此次大暴雨过程。西南低涡"初生形成"阶段,地面热低压东北侧有冷锋侵入,中心偏北形成暖锋,低涡近于正压;"稳定持续发展"阶段,冷锋南段移至地面热低压南侧,北段与暖锋结合形成准静止锋,低涡斜压性明显且呈近圆形,持续性暴雨主要出现在西南低涡的暖切变线附近和冷槽东侧;"东移变形减弱"阶段,冷空气第二次侵入,冷锋持续增强,西南低涡东移变形减弱。低层辐合、高层辐散、充沛的水汽输送以及不稳定能量的累积为西南低涡的加深、发展和强降水的维持提供了重要条件。西南低涡暖切变线和南侧冷槽附近发展起来的对流云团是暴雨产生的直接原因,强降水主要发生在云团上风方TBB梯度相对较大的区域。此次强降水过程的局地环流有低空急流和低空辐合线或切变线配合,雷达体积速度处理(velocity volume processing,VVP)法反演的风矢图可更直观地判断风向风速、天气系统所处的发展阶段以及判识辐合线或切变线,低空辐合线或切变线的演变以及低空急流的强度和移向对强降水天气产生的动力条件、维持时间和回波外推预报具有重要的指导意义。  相似文献   
38.
应用太原1996-2015年7个国家气象站、2008-2015年63个区域站6-9月逐时降水资料及相关探空、地面观测资料,对太原短时强降水日环流配置进行天气学分型,分析各流型下关键环境参数分布特征。结果表明,太原发生短时强降水的500 hPa环流形势有四种:冷涡型、高空槽型、高空槽加副高型、西北气流型。太原短时强降水常发生在比较温和的对流有效位能(CAPE)环境下,大部分过程CAPE值≤1500 J·kg^-1,冷涡型则≤1000 J·kg^-1。西北气流型850 hPa与500 hPa温差(ΔT850-500)大,静力不稳定度比其他型更强,且500 hPa有明显的干层存在。高空槽加副高型K指数大,且暖云厚度均值达3576 m,明显大于其他型2471~2608 m的均值。冷涡型全部、高空槽型85%的过程出现在弱0~6 km垂直风切变环境下,而高空槽加副高型、西北气流型0~6 km垂直风切变相对较大,35%以上达到中等强度。冷涡型、西北气流型短时强降水太原上空700 hPa水汽常比850 hPa更充沛。太原超过70 mm·h^-1的极端降水出现在西北气流型下,有中等强度的CAPE值、强层结不稳定、弱0~6 km垂直风切变、3550 m以上暖云厚度,中低空水汽充足,这些环境参量的配合对强降水效率有很好的指示意义。  相似文献   
39.
利用济南地区2008—2017年3—11月50个区域自动站逐时降水数据,研究该区域雨强超过10.0、20.0、30.0 mm·h~(-1)的降水量时空变化特征。结果表明:济南全区小时强降水受城市化、地形和盛行风的影响显著,济南城区、南部山区、长清山前地带、商河等地降水偏多,济南市区下风向近郊、章丘、济阳、平阴一带强降水偏少。7、8月济南地区小时强降水最多,雨强≥20.0 mm·h~(-1)的月平均降水量均超过40.0 mm,贡献率均超过25.0%。小时强降水日变化呈双峰双谷特征,11:00和23:00前后为强降水最少时段,04:00—05:00和14:00—21:00是强降水较多时段。大部分站点强降水峰值出现在午夜至凌晨和下午至傍晚时段。  相似文献   
40.
地面强风可直接造成人员伤亡和经济损失,严重影响出行安全、工农业生产等社会秩序。强风的发生与天气系统和复杂下垫面的共同作用密切相关,在城市区域尤为明显。受数值模拟技术和计算资源的限制,对实际天气条件下大范围城区的强风现象进行建筑物分辨率的大规模数值模拟研究仍是一个挑战。本研究利用中尺度气象模式嵌套流体计算动力模式的超高分辨率局地气象预报系统,对强冷空气过程造成广州市区的一次强风事件进行数值模拟,深入探讨强风的精细结构和形成机制。结果表明,伴随着强冷空气入侵,广州市区的平均风速和风场高频扰动均明显增强,且在城市冠层顶尤为明显,呈现区域不均匀的三维结构,数值模拟与地面观测相一致。较大范围的强风速和阵风主要出现在建筑物较为低矮的老城区上空,并持续影响下游河道等开阔区域。在高层建筑密集的新城区,虽然整体风速明显减弱,但能在平行风向的街道狭管和下游区域形成局地强风。特别是,超高层建筑群引起显著的垂直环流,导致强风扰动向下传播,造成最大风速达8 m s?1的地面局地强风,阵风指数接近2。上游建筑群引起的风场扰动呈现大尺度湍流结构,能沿着平均气流传播影响数公里之远的下游地区。当风场扰动经过广州塔等单体超高层建筑时,可在其两侧绕流区再次加强,形成局地强风。局地强风和阵风还出现在垂直于风向排列的沿江高层建筑群的侧边,与建筑屏风的阻挡效应和缺口溢出有关。研究结果促进认识城市强风的时空特征和物理机制,有助于提升城市气象的精细化预报水平。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号