首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6510篇
  免费   1479篇
  国内免费   2998篇
测绘学   613篇
大气科学   6735篇
地球物理   736篇
地质学   1063篇
海洋学   688篇
天文学   370篇
综合类   286篇
自然地理   496篇
  2024年   90篇
  2023年   266篇
  2022年   272篇
  2021年   360篇
  2020年   265篇
  2019年   339篇
  2018年   242篇
  2017年   230篇
  2016年   188篇
  2015年   295篇
  2014年   468篇
  2013年   402篇
  2012年   407篇
  2011年   384篇
  2010年   419篇
  2009年   456篇
  2008年   493篇
  2007年   440篇
  2006年   383篇
  2005年   376篇
  2004年   314篇
  2003年   369篇
  2002年   358篇
  2001年   362篇
  2000年   261篇
  1999年   223篇
  1998年   279篇
  1997年   277篇
  1996年   277篇
  1995年   230篇
  1994年   256篇
  1993年   239篇
  1992年   197篇
  1991年   202篇
  1990年   130篇
  1989年   140篇
  1988年   16篇
  1987年   14篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1980年   9篇
  1979年   8篇
  1965年   2篇
  1964年   6篇
  1963年   4篇
  1962年   4篇
  1957年   2篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
以镇海、奉化分别作为宁波沿海和内陆空气质量代表站。基于代表站2013-2017年污染物资料和2015年12月至2017年2月冬季激光雷达资料,对比分析宁波地区沿海和内陆站点的空气质量差异;利用NCEP的GDAS(Global Data Assimilation System)资料和ERA-Interim高分辨率再分析资料评估两地气溶胶来源及大气自净能力差异。结果表明:宁波沿海和内陆地区中度及以上污染主要集中于冬季,冬季首要污染物以PM2.5为主;镇海NO2浓度较奉化显著偏高,而两地PM2.5 和PM10 浓度差异较小。冬季镇海和奉化3km以下都存在消光系数大的气溶胶集中层,镇海3km内消光系数平均值较奉化偏高约40%。两地中度及以上污染时,镇海和奉化的气溶胶粒子主要来自宁波西北方向的内陆地区,比例分别为90%和63%,镇海地区其余10%左右来自近距离低空偏东气流的输送,而奉化地区有37%来自浙江西南部的短距离输送。冬季当宁波地区出现区域性优和中度以上污染时,浙江北部沿海分别盛行东北风和西北风,空气质量优时混合层内平均风速大于中度以上污染时。浙江省大气自净能力比值呈自西北向东南减小,宁波地区优等空气质量大气自净能力约为中度以上污染的 1.5倍。大气自净能力在不同空气质量等级下差异显著,可作为大气污染发生、发展和消退判定的参考依据。  相似文献   
242.
对基本气候态和降水日变化的分析是检验模式模拟性能、理解模式误差来源的重要手段。为了评估出对热带气候模拟效果较好的物理参数化方案组合,本文应用WRF带状区域模式,主要比较了四种积云对流参数化方案:NewTiedtke、Kain-Fritsch、newSAS、Tiedtke,和两种辐射参数化方案:RRTMG和CAM,对热带带状区域的气候模拟结果。研究表明:使用NewTiedtke积云对流参数化方案和RRTMG辐射方案的试验,表现出对气温、降水及降水日变化等综合性最好的模拟性能;NewTiedtke积云对流参数化方案能模拟出较好的降水空间分布和降水日变化位相分布特征;与RRTMG辐射方案相比,CAM辐射方案会使温度模拟偏低,特别是陆地上更明显,这种陆地上的冷偏差可能主要来源于Tmin的模拟偏冷。  相似文献   
243.
利用2009-2018年桂林大气成分站的大气气溶胶质量浓度观测资料,分析了PM_(10)、PM_(2.5)、PM_1统计值的变化规律,结果表明:(1)2009-2018年桂林ρ(PM_(10))、ρ(PM_(2.5))、ρ(PM_1)年平均值变化趋势基本相同,2012-2014年,年平均值相对较高,自2015年后有下降的趋势。一年中月变化基本呈冬高夏低的正V字型分布,月平均峰值出现在1月,谷值出现在7月。质量浓度小时平均值从数值上呈现出冬春秋夏的趋势,并呈现明显的双峰分布特征。ρ(PM_(2.5))/ρ(PM_(10))、ρ(PM_1)/ρ(PM_(10))、ρ(PM_1)/ρ(PM10_(2.5))介于60%-93%之间,说明全年可吸入颗粒物中细粒子占大多数。桂林大气气溶胶质量浓度月平均分布规律可能与天气气候特点有密切关系,日变化主要受到气象条件和污染物排放的影响。(2)桂林ρ(PM_(10))、ρ(PM_(2.5))和ρ(PM_1)与日均气温、日均湿度、日降水量、日均风速显著负相关,与日均气压显著正相关。中雨及大雨、暴雨可明显稀释污染物的浓度,细颗粒物易被雨水冲刷清除。2级以上的风力对于污染物有一定的驱散作用,尤其粗颗粒物下降的程度较明显。  相似文献   
244.
利用1979—2016年欧洲中期天气预报中心(ECMWF) ERA-Interim (1°×1°)再分析资料中的经、纬向水汽通量和大气可降水量(precipitation water vapor,PWV)数据,采用相关性分析、趋势分析法、累积距平、IDW等方法,分析三江源地区PWV与水汽通量的时空分布特征、降水转化率(precipitati-on conversion efficiency,PCE)变化规律。结果表明:过去的38 a,经、纬向多年平均水汽通量分别为50. 2、196. 7 kg·m-1·s^(-1),纬向水汽通量气候倾向率比经向大。南边界为纬向主要水汽输入边界,东边界为经向主要水汽输出边界,纬向水汽输送大于经向输送。多年平均PWV为1998. 3 mm,近38 aPWV呈现微弱增加趋势,1979—1997年,PWV呈下降趋势,1998年后PWV呈增加趋势,同期降水也在增加,说明该时段三江源地区气候转湿。PWV与水汽通量的年际变化趋势和转折年相一致。三江源区多年平均PCE为24. 57%,1989年PCE最高,达32. 76%,各季节平均PCE空间分布与年平均PCE分布一致,均表现出南部、东南部高,西部、东北部低的变化特征,各季节PCE大小差异明显,春季多年平均PCE为15. 92%,夏季25. 67%,秋季21. 01%,冬季仅7. 03%。  相似文献   
245.
利用常规观测资料、NCEP再分析资料、卫星以及雷达资料对2015年8月16—18日影响川渝地区的一次持续性大暴雨过程进行了分析。结果表明:在亚洲中高纬和低纬相对稳定的环流背景下,两次高原涡东移、两次冷空气南下侵入四川盆地共同促进了西南低涡生成发展,造成此次大暴雨过程。西南低涡"初生形成"阶段,地面热低压东北侧有冷锋侵入,中心偏北形成暖锋,低涡近于正压;"稳定持续发展"阶段,冷锋南段移至地面热低压南侧,北段与暖锋结合形成准静止锋,低涡斜压性明显且呈近圆形,持续性暴雨主要出现在西南低涡的暖切变线附近和冷槽东侧;"东移变形减弱"阶段,冷空气第二次侵入,冷锋持续增强,西南低涡东移变形减弱。低层辐合、高层辐散、充沛的水汽输送以及不稳定能量的累积为西南低涡的加深、发展和强降水的维持提供了重要条件。西南低涡暖切变线和南侧冷槽附近发展起来的对流云团是暴雨产生的直接原因,强降水主要发生在云团上风方TBB梯度相对较大的区域。此次强降水过程的局地环流有低空急流和低空辐合线或切变线配合,雷达体积速度处理(velocity volume processing,VVP)法反演的风矢图可更直观地判断风向风速、天气系统所处的发展阶段以及判识辐合线或切变线,低空辐合线或切变线的演变以及低空急流的强度和移向对强降水天气产生的动力条件、维持时间和回波外推预报具有重要的指导意义。  相似文献   
246.
利用2005-2016年青海高原地面观测、灾情和卫星云图等资料,对青海高原致灾性对流天气进行筛选和分类,在此基础上分析了各类致灾性对流天气的时空分布特征及与地形的关系。结果表明:(1)青海高原致灾性对流主要有雷暴、短时强降水、冰雹以及混合类四种,集中分布于高原东部。(2)地形对致灾性对流的落区、频次和强度起关键作用。雷暴多产生于山区,短时强降水和冰雹主要产生在迎风坡、河谷和地势较开阔的低地。其中,青东农区以混合类和冰雹居多,青南牧区以混合类居多,环湖与祁连地区和柴达木盆地以短时强降水居多。(3)近12 a青海高原致灾性对流整体呈波动式减少,2005-2010年(前期)致灾性对流日数和次数较多,2011-2016年(后期)显著减少,但不同类型年际变化特征略有差异。其中,冰雹和雷暴日数前期较大,后期显著减少;混合类和短时强降水日数无明显变化趋势,但前者年际波动幅度较后者大。(4)致灾性对流主要产生于5-9月,各类型均呈现典型的单峰型月分布,混合类和冰雹日数及次数的峰值均在8月,雷暴日数和次数的峰值均在6月,而短时强降水日数和次数的峰值分别在8月、7月。(5)致灾性对流集中产生于13:00至次日01:00,高峰时段(16:00-20:00)以冰雹和混合类居多,而夜间时段以短时强降水居多。  相似文献   
247.
利用2006~2017年风云气象卫星资料和气象再分析资料,对华北及周边5~8月对流活动和地面感热加热进行统计分析。分析表明,华北及周边白天平均感热加热和地形关系密切,内蒙古中部和东南部、华北北部和华北西部山区感热加热较强,最强感热加热出现在5月和6月,7月和8月明显减弱。和感热加热强度相对应,对流活动频率较高的月份同样出现在5月和6月,其中5月以弱对流为主,6月华北中北部强对流最活跃,另外,环渤海区域6~7月强对流相对频繁。5~8月日平均感热加热和对流频率趋势呈现一致的减弱对应关系。上午,感热加热引起河北西部和北部对流层低层出现辐合气流,700 hPa以下出现不同程度的增温,上升气流可达对流层中层,东侧的平原地区出现补偿下沉运动,升温和上升运动触发对流,在有利条件下发展东移。不同月份和区域对流频率日变化呈现明显差异,6月对流频率日变化显著,8月最弱,山区对流频率日变化显著,东部渤海及周边对流频率日变化较小。对流频率的月平均分布和日变化均表现出和地形相关的感热加热差异的特征。  相似文献   
248.
利用逐小时风云卫星TBB资料、逐小时中国自动站与CMORPH降水产品融合数据以及国家级地面观测站24小时累积降水量,统计分析2010~2016年夏季,伴随下游地区(104°E以东)降水的青藏高原云团东传过程以及东传过程中镶嵌于云团中的中尺度对流系统(Mesoscale Convective System,简称MCS)特征。结果表明,共出现120次伴随下游降水的高原云团东传过程,6月出现最频繁,但持续时间较长的过程多出现在7月。云团向东传播的主要三条路径是平直东传、沿长江折向东传和复合东传。其中路径二——沿长江折向东传中的过程是高影响过程,因为过程次数较多(46次),过程平均持续时间较长(62小时),在下游地区引发的降水日数和暴雨日数最多。属于东传过程的MCS在7月形成最多,集中分布在青藏高原东坡、云贵高原东部、长江沿岸及其以南地区。高原MCS影响长江中下游地区降水主要是通过向东传播的形式实现,因为即使生命史更长的中α尺度对流系统(Meso-α Convective System,简称MαCS)也鲜少直接移动至110°E以东地区。不同区域的中α尺度持续性拉长形对流系统(Permanent Elongated Convective System,简称PECS)的日变化特征显示,东传过程MCS更容易在夜间从高原东坡向东传播至下游地区。在三条路径中,路径二中的东传过程MCS数量最多、在下游地区发展最旺盛并与降水日数和覆盖范围存在更好的对应关系。  相似文献   
249.
为了进一步研究高原涡、西南涡对西南地区暴雨的影响,本文用中国气象局自动站与CMORPH降水数据融合的逐时降水资料、国家卫星气象中心的逐时FY-2E卫星的云顶亮温(TBB)资料、欧洲气象资料中心(ERA-interim)的再分析资料,通过天气学诊断分析方法以及拉格朗日轨迹模式HYSPLITv4.9,对发生在四川盆地的有高原涡东移影响西南涡发展引发暴雨的两次过程进行对比分析,发现:(1)两次暴雨过程的降水强度和分布有明显区别,并且TBB活动特征显示在过程一中有MCC(Mesoscale Convective Complex)的产生和发展,过程二则没有。(2)对于过程一,500 hPa上,高原涡逐渐减弱为高原槽并伸展到四川盆地上空,850 hPa上,在鞍型场附近有MCC的产生和发展,200 hPa上,高原涡在南亚高压北部偏西风急流下方的强辐散区内,位于南亚高压东南侧急流区下方稳定少动,偏东风急流北部有辐散中心,有利于西南涡的加强。对于过程二,500 hPa高原涡东移在四川盆地上空与西南涡耦合,形成一个稳定且深厚的系统,这也是过程二的暴雨强度比过程一强的最主要原因。200 hPa上,四川盆地始终位于南亚高压东侧的西北气流中,“抽吸作用”明显。(3)在过程一中,位涡逐渐东传且位涡增加的地方对应强降水区与MCC发展区,反映了暴雨和位涡的发展基本一致。在过程二中,中层位涡高值区从高原上东移并下传至盆地上空,两涡耦合使得上下层打通,位涡值比耦合之前单独的两涡强度更强。 MCC产生的必要条件是中层大气要有强正涡度、强辐合和强上升运动,在未产生MCC前,过程一与过程二在盆地上空的动力条件甚至是相反的;从热力条件看,过程一中有明显的干冷空气入侵,增强不稳定条件,有利于MCC的产生并引发强降水;另一方面,本文也应证了二阶位涡的水平分布与暴雨落区有较好的对应关系。(4)通过拉格朗日方法的水汽轨迹追踪模式和聚类分析方法分析可得两次暴雨过程的水汽输送源地和通道也有明显区别,过程一主要有两条水汽通道,通道一来自阿拉伯海和孟加拉湾洋面的底层,通道二来自四川南部750 m以下高度;而过程二的主要水汽输送通道有三条,通道一来自西方地中海、黑海和里海上空1500~2500 m高度附近,通道二来自阿拉伯海和印度洋的底层,通道三的水汽从孟加拉湾低层绕过云贵高原直接输送到四川盆地。  相似文献   
250.
华北雨季开始早晚与大气环流和海表温度异常的关系   总被引:2,自引:0,他引:2  
本文利用国家气候中心的1961~2016年华北雨季监测资料、美国国家环境预报中心/大气研究中心(NCEP/NCAR)的大气再分析资料、NOAA海表温度资料,分析了华北雨季开始早晚的气候特征,然后利用合成分析、回归分析等方法,研究了华北雨季开始早晚与大气环流系统和关键区域海表温度的关系。结果表明,56 a来华北雨季开始最早在7月6日,最晚在8月10日,1961~2016年华北雨季开始平均日期是7月18日。华北雨季开始时间具有显著的年际变化,但雨季发生早晚的长期变化趋势不太明显。华北雨季开始早晚与西太平洋副热带高压(简称副高)、东亚副热带西风急流、东亚夏季风等环流系统的活动关系密切,当对流层高层副热带西风急流建立偏早偏强,中层西太平洋副高第二次北跳偏早,低层东亚夏季风北进提前时,华北雨季开始偏早,反之华北雨季开始偏晚。华北雨季开始早晚与春、夏季热带印度洋、赤道中东太平洋海表温度关系显著且稳定,当Ni?o3.4指数和热带印度洋全区海表温度一致模态(IOBW)为正值时,贝加尔湖大陆高压偏强,副高偏强偏南,东亚夏季风偏弱,导致华北雨季开始偏晚;当海表温度指数为负值时,则华北雨季开始偏早。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号