首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   134篇
  国内免费   166篇
测绘学   6篇
大气科学   506篇
地球物理   21篇
地质学   168篇
海洋学   64篇
天文学   6篇
综合类   30篇
自然地理   29篇
  2024年   4篇
  2023年   14篇
  2022年   26篇
  2021年   34篇
  2020年   19篇
  2019年   35篇
  2018年   20篇
  2017年   20篇
  2016年   11篇
  2015年   23篇
  2014年   31篇
  2013年   36篇
  2012年   54篇
  2011年   39篇
  2010年   42篇
  2009年   47篇
  2008年   34篇
  2007年   36篇
  2006年   34篇
  2005年   32篇
  2004年   16篇
  2003年   41篇
  2002年   27篇
  2001年   26篇
  2000年   15篇
  1999年   16篇
  1998年   7篇
  1997年   15篇
  1996年   6篇
  1995年   12篇
  1994年   6篇
  1993年   15篇
  1992年   13篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1987年   1篇
  1934年   1篇
  1924年   1篇
排序方式: 共有830条查询结果,搜索用时 15 毫秒
721.
722.
丁之勇  董义阳  鲁瑞洁 《地理科学》2018,38(8):1379-1390
基于中国天山地区35个气象站点1960~2015年逐日最高、最低气温实测资料,应用Mann-Kendall趋势检验分析法, 空间分析法等研究了极端气温的时空变化特征,并探讨了气温指数的环流背景因素。结果表明:近56 a来,年平均最高、最低气温均呈上升趋势,而日较差呈下降趋势; 暖指数和日最低()气温极小值均呈上升趋势,而其他冷指数呈减小趋势;从季节变化看,除暖昼、暖夜之外,大部分气温指数的冬季变暖幅度均明显高于夏季。空间分布上,天山山区年平均最低气温和日较差以及大部分冷指数的变暖幅度大于南北坡,而暖指数则表现为南坡大于北坡和山区。高温和低温指数变化幅度表现出明显不对称性变化,年平均最低温的变暖幅度明显大于年平均最高温,冷指数变暖幅度大于暖指数,夜指数变暖幅度显著大于昼指数。天山地区年平均最高(低)气温和极端气温冷指数受环流指数北极涛动(AO)、北大西洋涛动(NAO)和厄尔尼诺-南方涛动(ENSO)的影响较大,而北太平洋涛动(NPO)、东亚夏季风(EASMI)、南亚夏季风(SASMI)和南海夏季风(SCSMI)是暖指数变化的重要因素。  相似文献   
723.
“5.7”广州局地突发特大暴雨中尺度特征及成因分析   总被引:7,自引:0,他引:7  
徐珺  毕宝贵  谌芸  陈涛  宫宇  李嘉睿 《气象学报》2018,76(4):511-524
2017年5月7日广州局地突发特大暴雨,降水集中爆发于广州北部复杂地形区,单点小时雨量大、强降雨持续时间长。然而降水发生于副热带高压边缘、无明显的低空急流等天气系统配合,为弱强迫背景下的华南前汛期暴雨,加之珠三角地形复杂,其触发和组织维持机制等问题引起了气象科研和预报工作者的广泛关注。针对其降水特点,采用5 min自动气象站观测、分钟雨量、风廓线雷达、葵花8号气象卫星红外等高时空分辨率观测数据探讨中尺度对流系统的触发和组织维持过程,发现:中纬度入海高压南侧偏东风和低层切变系统为珠三角边界层南风风速辐合提供了有利的天气背景,喇叭口地形增强了风速辐合。小尺度地形辐射降温配合城市热岛在山前形成高温度梯度区,山风与南风对峙使地面辐合线在山前移速变慢有助于热带云团的生成。地形阻挡抬升和高温度梯度加强上升运动,南风风速脉动使云团迅速向山前移动,最终对流爆发。以暖云降水为主的对流系统产生弱冷池驱动对流系统连续传播,使强降水回波面积增大并在小尺度地形影响下稳定位于增城附近,产生极端小时雨强;中尺度对流系统的单体移动方向和传播方向近乎相反导致系统移动非常缓慢,后向传播明显,最终导致长时间强降水。   相似文献   
724.
利用常规气象资料、通辽市和赤峰市多普勒雷达资料、气候极端降雪以及NCEP的FNL(1°×1°)逐6 h再分析资料,对2020年11月17-19日内蒙古中东部极端回流大暴雪天气进行分析。研究表明:500 hPa东移高空槽前暖湿气流、 700 hPa西南急流以及暖式切变线为降雪提供了丰富的水汽和动力辐合抬升机制,地面至850 hPa均为偏东风冷垫,中高空西南暖湿空气沿低层冷垫爬升产生锋生,是造成此次大暴雪的主要原因。降雪最强时段,从低层到高层均为上升运动,中低层水汽几乎接近饱和状态,深厚湿层有利于产生高效率的强降雪;通辽探空图有冰相层、逆温层、融化层、中性层等多种特殊层结,并有明显表征冻雨的“象鼻”层结曲线;低层东北风急流与中高层西南急流形成强的垂直风切变和温度差,动力锋生在降雪期间一直维持,动力锋生最强阶段和降雪最强时刻相对应。雷达反射率有0℃层亮带,50~55 dBz带状强回波;基本径向速度低层长时间维持东北急流构成的冷垫,并有一对正负速度中心的风速核,形成“牛眼”结构,“牛眼”结构代表边界层出现急流核;雷达基本径向速度图低层东北风,中高层西南急流,很好地反映了西南暖湿急流在冷垫上爬升...  相似文献   
725.
利用海口多普勒雷达、海南省区域加密自动站和常规资料对2016年4月11日凌晨发生在海南岛北部近海和陆地的大范围雷暴大风过程进行天气学分析。结果表明:(1)这次雷暴大风过程发生在500 hPa槽前、低空急流左前侧、低层切变线南侧、高空急流分流区下方和地面静止锋南侧的有利于对流发展的较大范围上升气流区域内;(2)对流风暴移动路径上的大气环境具有中等程度的条件不稳定、对流有效位能CAPE以及上干冷下暖湿的温-湿廓线垂直结构、强的深层垂直风切变,对流风暴形成后最终组织发展产生雷暴大风、大冰雹和短时强降水的多单体带状回波和弓形回波;(3)在多单体带状回波中镶嵌的风暴A和B各自发展成为具有中层径向辐合特征的超级单体,风暴B和C合并形成弓形回波,其中风暴C的中气旋加强成为弓形回波北部的气旋式中尺度涡旋;(4)阵风锋对对流风暴的正反馈作用、对流风暴前侧强劲的暖湿入流与风暴后侧径向风速相当的冷池出流,长时间倾斜依存的自组织结构及其与强的低层环境风垂直切变的相互作用,是多单体风暴和弓形回波长时间维持和加强的主要原因;(5)地面原来存在的β中尺度辐合切变线,对流风暴主体回波沿着海南岛北部近海东移等因素,有利于多单体带状回波和弓形回波的长时间维持。   相似文献   
726.
通过大洋赤道海域SST场差异及其原因分析,提出赤道大西洋、西印度洋及东太平洋表层水温低的可能原因。较详细地讨论了西太平洋暖池形成原因,这是由于西太暖池决定了Walker环流的产生,而Walker环流的移动和演变同样会对暖池区变化产生重要影响。  相似文献   
727.
利用常规气象观测资料、卫星产品和新一代天气雷达产品等,对2017年7月4日发生在河南东北部的突发强降水天气进行诊断分析。结果表明:(1)此次过程是以蒙古高空下滑冷槽侵袭副热带高压西北侧暖湿空气为背景,在中低层切变辐合抬升作用下产生的,强降水落区位于地面倒槽顶端,此处有利于中小尺度辐合旋转系统的形成,为对流的产生和维持提供动力抬升机制;(2)上冷下暖的温度垂直分布,形成了不稳定的大气层结;(3)0~2km较大的垂直风切变和相对较干的气层,有利于上升气流的倾斜和干空气的吸入,从而使得对流风暴得以加强和维持;(4)云图上东西两路对流云团的合并加强,形成较强的中尺度对流辐合系统,在合并形成过程中产生强降水;(5)多普勒雷达图上,多条雷暴出流边界的不断生成和合并为强对流连续发生和发展提供了动力辐合抬升条件,大范围的入流风场中的大风区有利于强降水的形成和维持。  相似文献   
728.
天山冻土耐冷菌的分离与产低温酶菌株的筛选   总被引:8,自引:2,他引:8  
在4℃条件下,从天山乌鲁木齐河源区的多年冻土中分离到36株耐冷菌.通过进一步的形态与生理生化特性的研究,发现大多数菌株为革兰氏阴性杆菌,最适生长温度在22℃左右,在37℃下不生长.这些菌株除氨苄青霉素外,对卡那霉素、四环素、和氯霉素都没有抗性.并从中筛选得到11株、3株、11株、8株在4℃下分别具有产低温蛋白酶、低温淀粉酶、低温脂酶、低温纤维素酶特性的耐冷菌.最后,对耐冷菌的环境适应性进行了初步分析.  相似文献   
729.
初步探讨了利用车间生产设备 ,冷分解 -浮选钾肥生产的影响因素。通过化工、选矿有关理论在本工艺中的运用 ,判断出冷分解—浮选工艺的冷分解过程是影响车间生产的关键过程。这为钾肥生产的设备调试奠定了基础。  相似文献   
730.
冷原子荧光法测定近海沉积物中汞含量的不确定度探讨   总被引:1,自引:0,他引:1  
任松 《海洋科学》2004,28(11):6-9
采用直观的因果图,分析冷原子荧光法测定近海沉积物中汞含量的不确定度影响因素。建立有效的数学模型,对测试过程中不确定度的各个分量进行了分步计算及整体合成,并对评定结果进行了讨论。结果表明,校准曲线、测量标准及仪器性能是冷原子荧光法测定近海沉积物中汞含量不确定度的主要影响因素.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号