首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1887篇
  免费   500篇
  国内免费   1029篇
测绘学   62篇
大气科学   2710篇
地球物理   39篇
地质学   31篇
海洋学   326篇
天文学   11篇
综合类   193篇
自然地理   44篇
  2024年   11篇
  2023年   52篇
  2022年   70篇
  2021年   89篇
  2020年   85篇
  2019年   104篇
  2018年   76篇
  2017年   66篇
  2016年   58篇
  2015年   86篇
  2014年   186篇
  2013年   162篇
  2012年   150篇
  2011年   175篇
  2010年   183篇
  2009年   153篇
  2008年   148篇
  2007年   151篇
  2006年   157篇
  2005年   172篇
  2004年   138篇
  2003年   143篇
  2002年   92篇
  2001年   71篇
  2000年   72篇
  1999年   55篇
  1998年   64篇
  1997年   59篇
  1996年   49篇
  1995年   59篇
  1994年   75篇
  1993年   43篇
  1992年   41篇
  1991年   44篇
  1990年   37篇
  1989年   24篇
  1988年   5篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1941年   3篇
  1936年   1篇
  1935年   1篇
  1930年   1篇
排序方式: 共有3416条查询结果,搜索用时 390 毫秒
111.
一次渤海强对流天气系统监测与大风成因探讨   总被引:1,自引:0,他引:1  
利用FY-2E卫星云图、天气雷达、雷电、海上平台、海岛站及海洋模式产品等资料,对2011年9月1日01—06时出现在渤海湾强对流天气成因进行综合分析。结果表明:位于燕山南麓较弱中β尺度云团,在500 hPa西风急流出口处、低层925 hPa切变线及层结不稳定条件下,触发多单体风暴重新发展,造成西岸区短时强降水天气及冰雹天气;中尺度系统主体入海后南压强度少变,在多单体风暴后部下沉气流与后部冷空气动量下传共同作用下,迅速加大渤海湾海区东北大风的分量,在同时具备天文大潮的条件下导致了南岸局部风暴潮灾害的发生。同步监测显示:云图中尺度象元TBB为-25°—-65℃,对流云团强弱交替变化时间为3—6 h,减弱后迅速转向东北岸区;三部天气雷达径向速度图先后监测到NE向低空急流"牛眼"时空尺度特征,同步垂直风廓线(VWP)反演出NE向低空急流由1000 m下降至300 m动量下传过程,与海岛站、平台监测值接近一致,中部与南部海区转为东北大风时间差为3—4 h;20时探空海岸带与风场垂直和水平切变明显,K指数为33℃,SI指数为-3.8℃,对流有效位能Cape为1555 J/kg;海洋中尺度数值产品3—6 h的K指数及海区辐合线的动态模拟与云图TBB中尺度象元、雷达回波移向相对一致,但风速明显偏小10—12 m/s。  相似文献   
112.
"珍珠"台风强度及路径异常的分析   总被引:1,自引:1,他引:1  
姜丽萍  夏冠聪  尤红  黄静  马慧 《台湾海峡》2008,27(1):124-128
利用常规观测资料和NCEP 1°×1°格点资料,从能量场、湿度场、辐散场以及西南季风和越赤道气流等多方面对"珍珠"的强度及路径进行分析,发现副高前期在南海的维持以及副高后期环流形势的调整是"珍珠"强度维持和路径突变的关键;南海海域维持高能区、弱水平风垂直切变、对流层上层强大的辐散场、以及充沛的水汽供应、风场动力非对称结构等是"珍珠"强度能维持的重要原因;西南季风、越赤道气流和副高南落而引发的东南风急流形成的季风汇合线是"珍珠"北翘的直接原因.台风风场结构中不对称强风速区的转移对台风路径改变有预示作用.  相似文献   
113.
冬季南海北部中尺度涡旋的数值研究   总被引:12,自引:1,他引:12  
南海环流的一个主要特征是上层海洋环流具有多涡结构,海洋中尺度涡旋的演变(时间上的生消和空间上的迁移)是南海环流季节调整的可能方式。文中依据卫星遥感海面高度资料和实际海洋观测所揭示的南海北部存在中尺度涡旋体系的基本事实,采用一个改进了涡分辨(eddy-resolving)普林斯顿海洋模式(POM),对冬季处于强盛的东北季风强迫以及黑潮在巴士海峡入侵的共同作用下的南海北部环流的中尺度涡旋体系进行了数值研究,初步再现了冬季南海北部中尺度涡的生命史。计算结果表明,在实际的气候冬季风应力驱动下,具有的实际侧边界地形的南海北部呈现有强烈的中尺度涡旋。文中探讨了中尺度涡的垂直结构、温盐场的配置以及大尺度水平辐合辐散、海洋垂直运动与之相关的时空结构。由此可以得知,在冬季南海北部中尺度涡旋生命史的不同阶段,上述动力学因子的重要性是相对的。不同的敏感性试验表明,斜压调整是形成冬季南海中尺度涡旋体系的决定性因子;边界的入流和风应力驱动是影响中尺度涡旋运动的主要因素。  相似文献   
114.
青岛海陆风三维结构的数值模拟   总被引:4,自引:1,他引:4  
本文采用 1个陡地形影响修正的三维中尺度流体静力的气象学模式 ,对青岛地区海陆风的日变化规律和三维结构进行了较细致的分析。结果显示 ,青岛有多支海陆风存在 ,且每支海陆风出现的时间、强度和向内陆伸展的距离有很大的不同。这其中沿岸山地的机械和热力作用扮演着重要的角色。在观测站 ,模拟结果和实测资料等方面有较好的一致性。  相似文献   
115.
吴德辉  连东英 《台湾海峡》2005,24(3):377-382
本文应用准地转正压无辐散模式对双涡的相互作用进行了数值模拟试验。试验结果表明:(1)只考虑相对涡度平流的情况下双涡以互旋为主,而且随着初始间距的缩小,互旋越来越明显。双涡的相互作用与它们的初始间距以及它们的强度和结构有密切的关系。(2)双涡的移动加速和减速都是出现在它们移动方向改变的时刻,当移动方向向逆时针方向变化时移速减慢,否则加快。  相似文献   
116.
李飞  胡鹏  何金海 《台湾海峡》2006,25(2):160-165
利用NCEP再分析资料分析了2004、2005年南海夏季风建立的大尺度环流特征.采用GRAPES对2a南海夏季风爆发过程进行了模拟.结果表明:GRAPES成功的模拟了南海夏季风建立期间南海地区低层东风转向和副高迅速东撤的过程,通过数值模拟,揭示了南海夏季风建立过程中存在着的中低纬相互作用.  相似文献   
117.
刘爱鸣  高珊 《台湾海峡》2011,30(2):151-157
应用常规资料,结合雷达、卫星云图和其他观测资料,分析了0908号台风"莫拉克"异常路径及其对台湾海峡两岸强降水的影响.结果表明:(1)500 hPa欧亚中高纬度为两槽一脊的形势和东北区域大范围的正变高使副热带高压加强西伸,以及0909号热带气旋"艾涛"前身低压阻挡了副热带高压南落的共同作用,使"莫拉克"台风前期向偏西方向移动.(2)高空冷涡提供了有利于热带低压维持和发展的动力条件,热带低压的维持又对"莫拉克"的移动造成影响.(3)冷空气持续南下造成副热带高压减弱,并且在"莫拉克"台风北侧形成稳定低能区;高空冷涡引起其北侧中高层高度下降和东风引导气流减弱;在弱环流和多热带气旋的环境场下,以及热带风暴"天鹅"(0907号)、"艾涛"对"莫拉克"台风的反方向作用力等因素的综合作用,是"莫拉克"台风在台湾海峡移速异常缓慢的原因.(4)"莫拉克"台风在台湾海峡滞留时间长,其北侧强偏东风和南侧强西南风带来充沛的水汽,及迎风坡辐合抬升所产生的中小尺度系统是造成闽北、浙南和台湾岛南部强降水持续时间长、累计雨量大的重要原因.  相似文献   
118.
中尺度暖涡对热带气旋强度变化的影响及作用机制   总被引:1,自引:0,他引:1  
基于两组理想化数值试验,对比研究了分布于热带气旋不同位置处的海洋中尺度暖涡所引发的热带气旋强度变化的时空特征。研究发现,热带气旋中心附近的暖涡对热带气旋强度有增强作用,而位于热带气旋外围的暖涡则会抑制热带气旋的发展。本研究将暖涡增强(减弱)热带气旋强度的区域称为内(外)区。随着时间的推移,内(外)区暖涡对热带气旋强度的增强(减弱)幅度逐渐减小(增大),区域范围同步减小(增大)。内区暖涡增强了热带气旋的次级环流和结构对称性、增加了海气界面热通量,同时减弱了外围螺旋雨带,进而导致热带气旋强度增强;若暖涡在外区,其对热带气旋的作用相反,导致热带气旋强度减弱。由于理想化试验中热带气旋静止不动,因此研究结果可能只适用于传播速度较慢的热带气旋。本研究结果有助于更好地理解热带气旋和海洋中尺度暖涡之间的相互作用,并通过引入热带气旋外区暖涡的影响助力提高热带气旋强度预报工作。  相似文献   
119.
杨兵  侯一筠 《海洋与湖沼》2020,51(5):978-990
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=10~(12)W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺度涡旋涡度仅改变近惯性能通量的空间分布,而对全球近惯性能量输入功率的影响可以忽略。  相似文献   
120.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号