首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   138篇
  国内免费   306篇
测绘学   16篇
大气科学   618篇
地球物理   64篇
地质学   71篇
海洋学   63篇
天文学   9篇
综合类   10篇
自然地理   15篇
  2024年   6篇
  2023年   12篇
  2022年   12篇
  2021年   18篇
  2020年   22篇
  2019年   32篇
  2018年   33篇
  2017年   27篇
  2016年   29篇
  2015年   29篇
  2014年   45篇
  2013年   62篇
  2012年   62篇
  2011年   42篇
  2010年   36篇
  2009年   43篇
  2008年   38篇
  2007年   51篇
  2006年   41篇
  2005年   29篇
  2004年   25篇
  2003年   24篇
  2002年   15篇
  2001年   12篇
  2000年   15篇
  1999年   13篇
  1998年   13篇
  1997年   17篇
  1996年   18篇
  1995年   11篇
  1994年   9篇
  1993年   5篇
  1992年   2篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有866条查询结果,搜索用时 187 毫秒
1.
9711号北上台风演变及暴雨过程的位涡诊断分析   总被引:6,自引:2,他引:6  
通过对 971 1号台风登陆北上穿过山东造成山东特大暴雨过程的湿位涡的分析 ,并从湿位涡的角度研究了台风演变及山东特大暴雨的形成机制 ,揭示了冷空气在台风演变及暴雨过程中的重要作用。结果表明 :倾斜涡度发展是暴雨产生和台风加强的重要机制之一 ,暴雨产生在 θe线陡立密集区内 ;湿位涡在这次暴雨过程中对流层低层具有 MPV1 <0 ,MPV2 >0的特征 ,此次暴雨产生在负的MPV1等值线密集区中 ;对流层上部及平流层下部高位涡的下传使得低层斜压性增大 ,引起低层的对流稳定度减小 ,促使气旋性涡度发展 ,有利于位势不稳定能量的释放 ,使得暴雨增幅 ,导致台风的加强并演变为温带气旋。  相似文献   
2.
赵凯  濮梅娟 《台湾海峡》2005,24(3):370-376
0421号热带风暴“海马(Haima)”于2004年9月13日12:00在浙江省温州市沿海登陆,登陆后迅速减弱为热带低压,20:00在浙江境内消失.本研究采用物理量诊断分析法,探讨该热带风暴登陆前后涡度场、湿焓场变化对其移向和强度的影响.结果表明,该热带风暴登陆后,涡度(ξ)明显减弱.涡度局地变化(ξ/t)值分布显示,风暴移动方向的后方,涡度减弱的趋势比前方涡度增大的趋势更剧烈;风暴有向其外围(ξ/t)正值中心(即涡度增幅最大)移动的趋势.该热带风暴登陆前、后,湿焓都增大,但登陆后湿焓增大趋势已大大减弱;风暴有向湿焓局地变化(E/t)正值中心移动的趋势,即向能量增强最大的方向移动.  相似文献   
3.
4.
Tenerife basically consists of three Miocene shield volcanoes, the Anaga, the Teno and Central shield, as well as the Pliocene Cañadas volcano. The temporal evolution and structural significance of each volcano with respect to the history of Tenerife is still a matter of debate. We present paleomagnetic results in order to enhance the view of the volcanic history of the Teno volcano by means of magnetostratigraphy. It is found that the initial subaerial phase shows reverse magnetizations throughout. After two major sector collapses, dominantly normally magnetized lavas extruded. Comparisons of observed magnetic polarities with the geomagnetic polarity timescale show that these volcanic activities occurred within 0.4 Myr between 6.3 and 5.9 Ma. Significantly younger flows, ~ 5.3 Myr old according to their radiometric age, revealed again normal polarity throughout. The absence of inversely magnetized lavas in-between the two normal periods indicates a volcanic hiatus or erosional phase. The evolutionary sequence and the estimated high production rates for the initial building phase are similar as would be expected for a hotspot volcano. The average geomagnetic field for 6.0 ± 0.2 Ma is close to an axial dipole field showing a slight far-sided/right-handed effect. The field strength, determined by Thellier-type intensity determinations, corresponds to a virtual axial dipole moment of 4.9 × 1022 A m2. This value is approximately half of the present day field strength, but similar to values obtained for the mid-Miocene. It also corresponds to the proposed tertiary low-field level of the geomagnetic dipole moment.  相似文献   
5.
We use paleomagnetic data to map Mesozoic absolute motion of North America, using paleomagnetic Euler poles (PEP). First, we address two important questions: (1) How much clockwise rotation has been experienced by crustal blocks within and adjacent to the Colorado Plateau? (2) Why is there disagreement between the apparent polar wander (APW) path constructed using poles from southwestern North America and the alternative path based on poles from eastern North America? Regarding (1), a 10.5° clockwise rotation of the Colorado Plateau about a pole located near 35°N, 102°W seems to fit the evidence best. Regarding (2), it appears that some rock units from the Appalachian region retain a hard overprint acquired during the mid-Cretaceous, when the geomagnetic field had constant normal polarity and APW was negligible.We found three well-defined small-circle APW tracks: 245–200 Ma (PEP at 39.2°N, 245.2°E, R=81.1°, root mean square error (RMS)=1.82°), 200–160 Ma (38.5°N, 270.1°E, R=80.4°, RMS=1.06°), 160 to 125 Ma (45.1°N, 48.5°E, R=60.7°, RMS=1.84°). Intersections of these tracks (the “cusps” of Gordon et al. [Tectonics 3 (1984) 499]) are located at 59.6°N, 69.5°E (the 200 Ma or “J1” cusp) and 48.9°N, 144.0°E (the 160 Ma or “J2” cusp). At these times, the absolute velocity of North America appears to have changed abruptly.North America absolute motion also changed abruptly at the beginning and end of the Cretaceous APW stillstand, currently dated at about 125 and 88 Ma (J. Geophys. Res. 97 (1992b) 19651). During this interval, the APW path degenerates into a single point, implying rotation about an Euler pole coincident with the spin axis.Using our PEP and cusp locations, we calculate the absolute motion of seven points on the North American continent. Our intention is to provide a chronological framework for the analysis of Mesozoic tectonics. Clearly, if APW is caused by plate motion, abrupt changes in absolute motion should correlate with major tectonic events. This follows because large accelerations reflect important changes in the balance of forces acting on the plate, the most important of which are edge effects (subduction, terrane accretion, etc.). Some tectonic interpretations: (1) The J1 cusp may be associated with the inception of rifting of North America away from land masses to the east; the J2 cusp seems to mark the beginning of rapid spreading in the North Atlantic. (2) The J2 cusp signals the beginning of a period of rapid northwestward absolute motion of western North America; motion of tectonostratigraphic terranes in the westernmost Cordillera seems likely to have been directed toward the south during this interval. (3) The interval 88 to 80 Ma saw a rapid decrease in the paleolatitude of North America; unless this represents a period of true polar wander, terrane motion during this time should have been relatively northward.  相似文献   
6.
沿岸上升流和沿岸急流的一个半解析理论   总被引:4,自引:2,他引:4       下载免费PDF全文
在考虑了陆架地形后,在垂直海岸的x z剖面上 ,对Boussinesq流体的非线性海洋运动方程求得了总动量守恒、温度守恒和位势涡度守恒的 普 适形式,进而得到流函数所满足的椭圆型二阶偏微分方程,在给定流体沿地形运动的条件下 ,算出问题的解. 计算结果表明,沿岸可以出现上升流也可以出现下沉流,它依赖于海洋的 大尺度背景条件. 计算所得的上升流、沿岸急流、温度的锋区结构与一些观测事实接近.  相似文献   
7.
首次使用HLAFS数值预报产品对黑龙江省暴雨进行分析,结合T63数值预报产品,利用两者提供的物理一08时和20时的实况场和预报场格点资料,对黑龙江省一次暴雨过程进行分析,找出了暴雨发生的物理机制,指出深厚的水汽条件以及水汽的辐合,强烈的上升运动和不稳定能量的存贮和释放是产生暴雨的关键因素。  相似文献   
8.
A two-dimensional,semi-geostrophic numerical model incorporating the tropopause and stratosphere is used to investigate the effects of a positive potential vorticity anomaly and latent heat release on the frontogenetic process and the structure of the resulting frontal zone.It is demonstrated that(1) the inclusion of tropopause and stratosphere significantly changes the frontal structure only in the upper levels;(2) a clearly defined quasi-equivalent barotropic structure and a region of upward motion of finite width appear when a positive potential vorticity anomaly exists on the warm side of the maximum baroclinity in the lower troposphere,especially when it is located on the south edge of the baroclinic zone;(3) the above mentioned structure deteriorates as the frontogenesis proceeds in a dry atmosphere but can be maintained in a moist frontogenetic process with condensational heating;(4) the combination of a positive potential vorticity anomaly and the latent heat release is able to accelerate the frontogenesis significantly with the time needed to form an intense frontal zone reduced to less than 15 h.The results have significant theoretical importance in understanding the complex nature of frontal structure and frontogenesis,especially in understanding the dynamic structure of the subtropical frontal zone observed during early summer over East Asia.  相似文献   
9.
This paper designs three quasi-geostrophic barotropic models with a radial/horizontal grid length being 2 kin,one in the polar coordinates,one on a stationary typhoon circulation condition and another on a non-stationary typhoon circulation condition in the Cartesian coordinates,to investigate the effects of azimuthal and radial linear advections,and nonlinear advection on the inward propagation of mesoscale vorticity and the changes of typhoon intensity.Results show that the azimuthal linear advection may result in the formation of spiral vorticity bands;the radial linear advection in a certain parameter set is able to transfer vorticity inwards,leading to a slight enhancement of typhoon;the nonlinear advection of perturbation vorticity on a stationary typhoon circulation condition may transfer more vorticities inwards,thus resulting in a distinct enhancement of typhoon;and the nonlinear advection on a non-stationary typhoon circulation condition possesses duality,i.e.on the one hand,the advection increases the vorticity of inward propagation,thus favorable to the intensification of typhoon,and on the other hand,in the inward propagation process of vorticity the originally concentric and axisymmetric structure of typhoon basic flow is damaged,and a complex flow pattern forms,which in turn tends to weaken the circulation of typhoon.At last the paper discusses the possible applications of those results in typhoon intensity prediction.  相似文献   
10.
On August 5, 2001, Shanghai was struck by a torrential rainfall due to the passage of a tropical depression (TD). The rainfall intensity has been the strongest in recent 50 years. In this paper, a set of mesoscale re-analyses data and the planetary boundary layer observation from a wind profiler are used to understand the possible mechanism of such a heavy rain. Results show that the outburst of a southerly jet in the lower atmosphere triggered the explosive development of cyclonically vertical vorticity in the region with steep potential temperature surfaces in front of the TD; while the cyclonic vorticity increased notably at higher levels due to the small atmospheric vertical stability of westerly currents in the vicinity of Shanghai. The simultaneous sharp development of cyclonic vorticity at different levels should be the main cause for the torrential rainfall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号