首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3185篇
  免费   500篇
  国内免费   1246篇
测绘学   439篇
大气科学   117篇
地球物理   447篇
地质学   2849篇
海洋学   434篇
天文学   25篇
综合类   220篇
自然地理   400篇
  2024年   11篇
  2023年   38篇
  2022年   94篇
  2021年   116篇
  2020年   128篇
  2019年   169篇
  2018年   165篇
  2017年   145篇
  2016年   163篇
  2015年   182篇
  2014年   233篇
  2013年   269篇
  2012年   233篇
  2011年   283篇
  2010年   251篇
  2009年   251篇
  2008年   239篇
  2007年   268篇
  2006年   298篇
  2005年   231篇
  2004年   209篇
  2003年   167篇
  2002年   127篇
  2001年   113篇
  2000年   106篇
  1999年   85篇
  1998年   58篇
  1997年   58篇
  1996年   50篇
  1995年   42篇
  1994年   34篇
  1993年   24篇
  1992年   21篇
  1991年   24篇
  1990年   11篇
  1989年   8篇
  1988年   8篇
  1987年   8篇
  1986年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有4931条查询结果,搜索用时 296 毫秒
131.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
132.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   
133.
For slope condition of ground surface, the asymmetrical deformation about the vertical center line and the horizontal center line of the tunnel cross section can be formed. A unified displacement function expressed by the Fourier series is presented to express the asymmetrical deformation of the tunnel cross section. Five basic deformation modes corresponding to the expansion order 2 are a complete deformation mode to reflect deformation behaviors of the tunnel cross section under slope boundary. Such this complete displacement mode is implemented into the complex variable solution for analytically predicting tunneling-induced ground deformation under slope boundary. All of these analytical solutions are verified by good agreements of the comparison between the analytical solutions and finite element method results. A parameter study is carried out to investigate the influence of deformation modes of the tunnel cross section, geometrical conditions of the tunnel and the slope angle, and “Buoyancy effect” on the displacement field. Finally, the proposed method is consistent with measured data of the Hejie tunnel in China qualitatively. The presented solution can provide a simplified indication for evaluating the ground deformation under slope condition of ground surface.  相似文献   
134.
Interest in the mechanics of landslides has led to renewed evaluation of the infinite slope equations, and the need for a more general framework for estimating the factor of safety of long and infinite slopes involving non‐homogeneous soil profiles. The paper describes finite element methods that demonstrate the potential for predicting failure in long slope profiles where the critical mechanism is not necessarily at the base of the soil layer. The influence of slope angle is also examined in long slopes, leading to some counter‐intuitive conclusions about the impact of slope steepness on the factor of safety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
135.
The use of loose spoils on steep slopes for surface coal mining reclamation sites has been promoted by the US Department of Interior, Office of Surface Mining for the establishment of native forest, as prescribed by the Forest Reclamation Approach (FRA). Although low‐compaction spoils improve tree survival and growth, erodibility on steep slopes was suspected to increase. This study quantified a combined KC factor (combining the effects of the soil erodibility K factor and cover management C) for low compaction, steep‐sloped (>20°) reclaimed mine lands in the Appalachian region, USA. The combined KC factor was used because standard Unit Plot conditions required to separate these factors, per Revised Universal Soil Loss Equation (RUSLE) experimental protocols, were not followed explicitly. Three active coal mining sites in the Appalachian region of East Tennessee, each containing four replicate field plots, were monitored for rainfall and sediment yields during a 14‐month period beginning June 2009. Average cumulative erosivity for the study sites during the monitoring period was measured as 5248.9 MJ·mm·ha?1·h?1. The KC ranged between 0.001 and 0.05 t·ha·h·ha?1·MJ?1·mm?1, with the highest values occurring immediately following reclamation site construction as rills developed (June – August 2009). The KC for two study sites with about an 18–20 mm spoil D84 were above 0.01 t·ha·h·ha?1·MJ?1·mm?1 during rill development, and below 0.003 t·ha·h·ha?1·MJ?1·mm?1 after August 2009 for the post‐rill development period. The KC values for one site with a 40 mm spoil D84 were never above 0.008 t·ha·h·ha?1·MJ?1·mm?1 and also on average were lower, being more similar to the other two sites after the rill development period. Based on an initial KC factor (Ke) measured during the first few storm events, the average C factor (Ce) was estimated as 0.58 for the rill development period and 0.13 for the post‐rill development period. It appears that larger size fractions of spoils influence KC and Ce factors on low‐compaction steep slopes reclamation sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
136.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
137.
One of the most applicable geotechnical structures whose analysis is carried out through iterative procedures is the reinforced soil slope. In this regard, the most successful method for the reinforced slope analysis through numerical methods is the finite element method whose updating mesh may result in some difficulties. In this study, the Natural Element Method (NEM), which is a mesh-free method, in conjunction with conventional limit equilibrium is implemented to find the slip surface in the reinforced slopes. Results demonstrate the convergence and preciseness of the present method in comparison with the other numerical methods and conventional limit equilibrium method.  相似文献   
138.
The first order reliability method (FORM) is efficient, but it has limited accuracy; the second order reliability method (SORM) provides greater accuracy, but with additional computational effort. In this study, a new method which integrates two quasi-Newton approximation algorithms is proposed to efficiently estimate the second order reliability of geotechnical problems with reasonable accuracy. In particular, the Hasofer–Lind–Rackwitz–Fiessler–Broyden–Fletcher–Goldfarb–Shanno (HLRF–BFGS) algorithm is applied to identify the design point on the limit state function (LSF), and consequently to compute the first order reliability index; whereas the Symmetric Rank-one (SR1) algorithm is nested within the HLRF–BFGS algorithm to compute good approximations, yet with a reduced computational effort, of the Hessian matrix required to compute second order reliabilities. Three typical geotechnical problems are employed to demonstrate the ability of the suggested procedure, and advantages of the proposed approach with respect to conventional alternatives are discussed. Results show that the proposed method is able to achieve the accuracy of conventional SORM, but with a reduced computational cost that is equal to the computational cost of HLRF–BFGS-based FORM.  相似文献   
139.
利用天山北坡中部沙湾地区两个坡面随海拔高度采集的雪岭云杉树芯样本,建立了13个树轮宽度年表。分析结果表明,2个坡面年表特征值随海拔高度的变化而不同,不同海拔树轮宽度对气候因子的响应呈现规律性。高低海拔采样点在生长季前对气候因子的响应相同,而在生长季则呈相反的响应。在生长季,高海拔采样点随海拔的升高,树轮宽度对气温的响应降低。不同坡面间受小生境的干扰较大,坡度较小的大鹿角湾高海拔采样点主要受气温的影响,而在坡度较大的石头沟高海拔采点则对降水有更明显的响应。沙湾树轮宽度年表对PDSI指数的响应与大尺度范围的树轮响应一致,即与PDSI呈正相关,低海拔区域响应最显著。主成分分析表明,在同一坡面树轮宽度年表的前3个主分量可以反映因海拔高度变化气候因子对树木年轮生长的影响。2个坡面树轮宽度年表的第一主分量表征持续干旱对整个坡面的影响。  相似文献   
140.
针对定量分析土壤侵蚀在各坡度等级上的空间分布研究较少的现状,该文选用通用的土壤流失预报方程,对云蒙湖流域1986—2010年间的土壤水力侵蚀状况进行了定量的估算,以探讨不同坡度上的土壤侵蚀特征,并进一步分析了土壤侵蚀变化与人类活动的关系。分析得出:土壤侵蚀强度发生在人类活动比较频繁的区域上(8~25°坡度)更为严重;2010年比1986年强度以上所占比例在15°坡度等级上相对更低,在15°坡度等级上有所增加;云蒙湖流域主要土壤侵蚀量发生在25°坡度上;2010年比1986年耕地面积减少、林地和居民用地面积增加是土壤侵蚀降低的主要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号