首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6610篇
  免费   1683篇
  国内免费   2408篇
测绘学   450篇
大气科学   2169篇
地球物理   1924篇
地质学   3677篇
海洋学   1253篇
天文学   104篇
综合类   440篇
自然地理   684篇
  2024年   30篇
  2023年   89篇
  2022年   237篇
  2021年   255篇
  2020年   292篇
  2019年   390篇
  2018年   333篇
  2017年   326篇
  2016年   331篇
  2015年   396篇
  2014年   533篇
  2013年   556篇
  2012年   529篇
  2011年   554篇
  2010年   420篇
  2009年   564篇
  2008年   533篇
  2007年   624篇
  2006年   542篇
  2005年   410篇
  2004年   422篇
  2003年   342篇
  2002年   317篇
  2001年   245篇
  2000年   235篇
  1999年   211篇
  1998年   184篇
  1997年   166篇
  1996年   150篇
  1995年   106篇
  1994年   108篇
  1993年   54篇
  1992年   50篇
  1991年   36篇
  1990年   26篇
  1989年   12篇
  1988年   19篇
  1987年   19篇
  1986年   9篇
  1985年   11篇
  1984年   6篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1971年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
901.
应用WRF—Chem(Weather Research and Forecasting Model with Chemistry)模式模拟研究了2007年8月京津冀地区近地面O3、NO2、PM2.5浓度的时空变化特征,将模拟结果与观测数据进行详细对比,结果表明,模式可以较好地模拟O3、PM2.5,浓度的空间分布和时间变化特征,成功再现了8月33和PM2.5的几次积累增加过程,其中O,的模拟值与观测值的相关系数为0.69~0.86,PM2.5的相关系数为0.44~0.49,但模式对NO2的模拟相对较差,相关系数为0.27~0.43。北京、天津地区为O3月均低值区,月均体积浓度约30×10^-9,渤海及京津冀以西地区O3月平均体积浓度可达60×10^-9;PM2,呈现南高北低的分布特征,变化范围为120~240μg/m3。14时月平均03体积浓度在北京、天津地区低于周边地区,约为60×10^-9;而PM2.5质量浓度在环渤海地区和河北南部较高,为100~120μg/m^3。8月17日北京出现一次典型的高浓度O,污染事件,14时北京地区温度达到33℃,O3体积浓度为80×10^-9~110×10^-9。在局地排放、化学反应和外来输送的共同作用下,渤海西岸和北岸PM2.5的质量浓度超过120μg/m3,其中二次气溶胶质量浓度为50~100μg/m3,一次排放人为气溶胶质量浓度为10~20μg/m3,海盐质量浓度为1~7μg/m3,二次气溶胶是该地区PM2.5的主要贡献者。  相似文献   
902.
不同分辨率CCSM4对东亚和中国气候模拟能力分析   总被引:9,自引:4,他引:5  
田芝平  姜大膀 《大气科学》2013,37(1):171-186
本文利用通用气候系统模式CCSM4在三种水平分辨率下的工业化革命前期气候模拟试验,结合观测和再分析资料,比较了各分辨率下模式对中国温度和降水、东亚海平面气压和850 hPa风场的模拟能力,综合评价了模式分辨率对东亚和中国气候模拟的影响.结果表明,三种分辨率对中国温度均具有很好的模拟能力,除春季外,低分辨率(T31,约3.75°×3.75°)对全年温度的模拟能力均要稍好于中(f19,约1.9°×2.5°)、高(f09,约0.9°×1.25°)分辨率;各分辨率对中国降水的模拟能力远不如温度,除冬季外全年都出现的中部地区虚假降水并未因为模式分辨率提高而得到本质改善;对于东亚海平面气压场,低分辨率在冬季模拟能力相对最好,中等分辨率在夏季相对较好,而高分辨率的模拟能力均表现最差;低分辨率对850 hPa东亚冬季风和夏季风的模拟能力均要好于中、高分辨率,而两种较高分辨率的模拟能力则比较接近.总的来说,低分辨率CCSM4在东亚和中国气候模拟中表现出了较大优势,加之其计算代价小,适合进行需要较长时间积分的气候模拟研究.  相似文献   
903.
To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC’s Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP’s Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCP8.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCP8.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component.  相似文献   
904.
In this paper, the effects of land cover changes on the climate of the La Plata Basin in southern South America are investigated using the Weather and Research Forecasting (WRF) Model configured on a 30/10km two-way interactive nested grid. To assess the regional climate changes resulting from land surface changes, the standard land cover types are replaced by time-varying Ecosystem Functional Types (EFTs), which is a newly devised land-cover classification that characterizes the spatial and interannual variability of surface vegetation dynamics. These variations indicate that natural and anthropogenic activities have caused changes in the surface physical parameters of the basin, such as albedo and roughness length, that contributed to regional climate changes. EFTs are obtained from functional attributes of vegetation computed from properties of the Normalized Difference Vegetation Index (NDVI) to represent patches of the land surface with homogeneous energy and gas exchanges with the atmosphere. Four simulations are conducted, each experimental period ranging from September to November in two contrasting years, 1988 and 1998. The influence of an identical EFT change on the surface heat fluxes, 2-m temperature and humidity, 10-m winds, convective instabilities and large-scale moisture fluxes and precipitation are explored for 1988 (a dry year) and 1998 (a wet year). Results show that the surface and atmospheric climate has a larger response to the same EFT changes in a dry year for 2-m temperature and 10-m wind; the response is larger in a wet year for 2-m water vapor mixing ratio, convective available potential energy, vertically integrated moisture fluxes and surface precipitation. For EFTs with high productivity and a weak seasonal cycle, the nearsurface temperature during the spring of 1988 and 1998 increased by as much as 1℃ in the central and western portions of La Plata Basin. Additionally, for higher productivity EFTs, precipitation differences were generally positive in both dry and wet years, although the patterns are not uniform and exhibit certain patchiness with drier conditions.  相似文献   
905.
《Climate Policy》2013,13(2):251-268
Abstract

The objective of this paper is to show that the investments through the clean development mechanism (CDM) can exert a leverage effect to (i) make attractive to developing countries non-binding commitments and the adoption of national policies and measures; this comes as a guarantee of non-conditionally of the mechanism to strictly environmental concerns and (ii) create a flow of additional investments and technological transfer from Annex B countries to non-Annex B countries.

The Indian power sector has been chosen as an example of a sector where institutional barriers, market imperfections, and tariff distortions create a great space for Pareto improvements and leave an important potential for no-regret measures: technological transfer, air conditioned systems, transport infrastructures and removal of subsidies on consumption.

This paper presents a micro-economic formalisation on (i) the evolution of profitability of current emitting technologies used in the power sector under the adoption of national policies and measures and (ii) the impact on renewable energy technologies competitiveness of emission credits in the context of CDM. This formalisation has been developed to enable quantitative simulation. A first exercise using the Markal model (used in 77 countries) on the electric sector in India enabled us to simulate the leverage effect of emission credits on additional incomes taken as a proxy for development.  相似文献   
906.
Shocks propagating in the interstellar medium (ISM) play an important role in the life of molecular clouds. Through a theoretical study of interaction between clouds and shocks we can understand, for example, the density distribution of observed molecular clouds and the first steps of star formation. The only way to study of interaction in detail is via a numerical hydrodynamical simulation. In this paper we present the first results of a hydrocode which is able to follow the processes after the collision between the cloud and shock front.Our main theoretical result is that the chemical processes (e.g. H2 dissociation) can affect the dynamical processes significantly. Global parameters of the cloud are calculated for the comparision of the simulation and the observations.  相似文献   
907.
A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was analyzed and shown to agree vey well with observation. Simulation of surface wind over the central-western equatorial Pacific was more successful than that over the eastern Pacific. Zonal propagating feature of interannual variability of the tropical Pacific wind anomalies and its decadal difference were also simulated successfully. The close agreement between simulation and observation on the existence of obvious interdecadal variability of tropical Pacific surface wind attested to the high simulation capability of AGCM.  相似文献   
908.
Periodic paddy field flooding is a major source of groundwater recharge. Many paddy fields thus are used as groundwater recharge ponds after harvesting the first crop of the summer. Following rice harvesting, paddy field surfaces may crack into fissures as a result of drainage and exposure to sunlight. Field observation indicates that applying precipitation to the paddy field can increase the rate of infiltration. To quantitatively evaluate the amount of infiltration in a cracked paddy field, this study sets up a simple soil crack model to simulate the field infiltration process. A three‐dimensional groundwater model FEMWATER is adopted to simulate water movement in the paddy field subjected to various crack conditions. Using the field and laboratory data of irrigation water requirements, soil physical properties, hydraulic conductivities and soil profiles obtained from Ten‐Chung, FEMWATER simulates the water movement in the dry cracked paddy. Simulation results show that if the cracks develop extensively and penetrate the ploughed soil, the infiltration rate may increase significantly. The infiltration fluxes of crack with depths of 80, 60 and 27·5 cm are 18·77, 14·50 and 8·06 times higher than that of 20 cm, respectively. The simulation results of cracks with 80 cm depth correlated closely with field observations. The results of the study elucidate the processes of unsaturated water movement in a dry cracked paddy field. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
909.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants.It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported.The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods-one was impacts of ozone on light use efficiency , and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coe cients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   
910.
The yield vertex non‐coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22 :621–653) to investigate the non‐coaxial influences on the stress–strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non‐coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non‐coaxial influences. All the predictions indicate that the use of the non‐coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non‐coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non‐coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号