首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14440篇
  免费   3056篇
  国内免费   3899篇
测绘学   2179篇
大气科学   1534篇
地球物理   4381篇
地质学   8553篇
海洋学   2072篇
天文学   237篇
综合类   1166篇
自然地理   1273篇
  2024年   37篇
  2023年   153篇
  2022年   403篇
  2021年   570篇
  2020年   597篇
  2019年   813篇
  2018年   620篇
  2017年   732篇
  2016年   736篇
  2015年   849篇
  2014年   1030篇
  2013年   951篇
  2012年   1027篇
  2011年   1089篇
  2010年   975篇
  2009年   1012篇
  2008年   966篇
  2007年   1066篇
  2006年   1043篇
  2005年   883篇
  2004年   830篇
  2003年   691篇
  2002年   539篇
  2001年   459篇
  2000年   462篇
  1999年   439篇
  1998年   410篇
  1997年   348篇
  1996年   301篇
  1995年   257篇
  1994年   250篇
  1993年   188篇
  1992年   174篇
  1991年   113篇
  1990年   88篇
  1989年   117篇
  1988年   60篇
  1987年   45篇
  1986年   24篇
  1985年   14篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
131.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
132.
P矢量方法在南海夏季环流诊断计算中的应用   总被引:8,自引:4,他引:8  
基于1998年6~7月南海调查航次的CTD资料,对南海环流采用最近发展的P矢量方法进行诊断计算.计算结果:黑潮向西入侵南海,然后做反气旋弯曲向东北方向流动,最终有通过巴士海峡流出南海的趋势.在南海北部存在一个气旋性环流,这个环流的强度和范围随深度增加而减小.该环流的冷中心位置随深度增加稍向南移.南海中部、越南以东海域存在一个明显的气旋涡和反气旋涡,尤其在200m及其以上水层均相当稳定,反气旋涡位于越南以东,其中心位置在11°53'N,111°50'E,气旋涡的中心位置在13°17'N,112°55'E,两者的尺度皆约为250km.吕宋岛西侧存在一个反气旋涡.在计算海区南部、巴拉望岛西南海域,100m以上层存在一个反气旋式涡.从各层流场分布均可以显示海流在西部强化的现象.  相似文献   
133.
A numerical model to compute wave field is developed. It is based on the Berkhoff diffraction-refraction equation, in which an energy dissipation term is added, to take into account the breaking and the bottom friction phenomena. The energy dissipation function, by breaking and by bottom friction, is introduced in the Berkhoff equation to obtain a new equation of propagation.The resolution is done with the hybrid finite element method, where lagrangians elements are used.  相似文献   
134.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   
135.
136.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
137.
I present the derivation of the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar), which is developed for adopting a non-diagonal background error covariance matrix in nonlinear variational analyses (i.e., analyses employing a non-quadratic cost function). POpULar is based on the idea of a linear preconditioned conjugate gradient method widely adopted in ocean data assimilation systems. POpULar uses the background error covariance matrix as a preconditioner without any decomposition of the matrix. This preconditioning accelerates the convergence. Moreover, the inverse of the matrix is not required. POpULar therefore allows us easily to handle the correlations among deviations of control variables (i.e., the variables which will be analyzed) from their background in nonlinear problems. In order to demonstrate the usefulness of POpULar, we illustrate two effects which are often neglected in studies of ocean data assimilation before. One is the effect of correlations among the deviations of control variables in an adjoint analysis. The other is the nonlinear effect of sea surface dynamic height calculation required when sea surface height observation is employed in a three-dimensional ocean analysis. As the results, these effects are not so small to neglect.  相似文献   
138.
The accurate prediction of extreme excursion and mooring force of floating offshore structures due to multi-variete environmental conditions which requires the joint probability analysis of environmental conditions for the worst case situation is still impractical as the processing of large amount of met-ocean data is required. On the other hand, the simplified multiple design criteria (e.g. the N-year wave with associated winds and currents) recommended by API known as traditional method does lead neither to the N-year platform response nor to the N-year mooring force. Therefore, in order to reduce the level of conservatism as well as uncertainties involved in the traditional method the response-based method can be used as a reliable alternative approach. In this paper this method is described. In order to perform the calculations faster using large databases of sea states, Artificial Neural Networks (ANN) is designed and employed. In the paper the response-based method is applied to a 200,000 tdw FPSO and the results are discussed.  相似文献   
139.
The tip clearance inside the duct from the tip of the impeller is very important to the performance of waterjet systems, which fact has been proven in the pump field. The tip clearance is especially important on the model scale because it is very difficult in manufacture to keep the tip clearance constant and minimally small along the inside of the duct. In the present study, a flush-type waterjet propulsion unit (duct, impeller, stator, and nozzle) was designed for an amphibious tracked vehicle. Two impellers of different inner diameter were designed and manufactured in order to investigate the gap effect. Resistance and self-propulsion tests with a 1/5-scale model were conducted in PNU towing tank. The flow rate at the nozzle exit, the static pressure at the various sections along the duct and also the nozzle, the revolution of the impeller, and the torque, thrust, and towing forces at various advanced speeds were measured. Based on these measurements, the performance was analyzed according to the ITTC 96 standard analysis method. Based on this analysis method, the full-scale effective and delivered power of the tracked vehicle was estimated according to the variation of tip clearance.  相似文献   
140.
The use of an optical oxygen sensor to measure dissolved oxygen in seawater was investigated. The sensor is based on the dynamic quenching of an oxygen-sensitive fluorochrome embedded in the tip. Dissolved oxygen in seawater samples collected from eight stations at depths ranging from 3000 to 6000 m was analyzed both with the optical sensor and by the Winkler titration method. The two sets of data did not differ significantly. The stability and simplicity of the method and the good agreement of the results with those of the titration method indicate that the sensor would be useful for fieldwork.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号