首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18868篇
  免费   2783篇
  国内免费   3994篇
测绘学   4555篇
大气科学   3064篇
地球物理   2922篇
地质学   5316篇
海洋学   5120篇
天文学   416篇
综合类   1553篇
自然地理   2699篇
  2024年   68篇
  2023年   203篇
  2022年   702篇
  2021年   836篇
  2020年   860篇
  2019年   1035篇
  2018年   773篇
  2017年   939篇
  2016年   909篇
  2015年   1022篇
  2014年   1101篇
  2013年   1424篇
  2012年   1102篇
  2011年   1130篇
  2010年   964篇
  2009年   1245篇
  2008年   1217篇
  2007年   1300篇
  2006年   1134篇
  2005年   1018篇
  2004年   957篇
  2003年   786篇
  2002年   734篇
  2001年   623篇
  2000年   514篇
  1999年   471篇
  1998年   461篇
  1997年   406篇
  1996年   331篇
  1995年   248篇
  1994年   227篇
  1993年   204篇
  1992年   174篇
  1991年   114篇
  1990年   103篇
  1989年   61篇
  1988年   52篇
  1987年   37篇
  1986年   23篇
  1985年   35篇
  1984年   17篇
  1983年   21篇
  1982年   22篇
  1981年   15篇
  1980年   3篇
  1979年   10篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Abstract

This study examined the end-of-winter snow storage, its distribution and the spatial and temporal melt patterns of a large, low gradient wetland at Polar Bear Pass, Bathurst Island, Nunavut, Canada. The project utilized a combination of field observations and a physically-based snowmelt model. Topography and wind were the major controls on snow distribution in the region, and snow was routinely scoured from the hilltop regions and deposited into hillslopes and valleys. Timing and duration of snowmelt at Polar Bear Pass were similar in 2008 and 2009. The snowmelt was initiated by an increase in air temperature and net radiation receipt. Inter-annual variability in spatial snowmelt patterns was evident at Polar Bear Pass and was attributed to a non-uniform snow cover distribution and local microclimate conditions. In situ field studies and modelling remain important in High Arctic regions for assessing wetland water budgets and runoff, in addition to model parameterization and validation of satellite imagery.

Editor Z.W. Kundzewicz

Citation Assini, J. and Young, K.L., 2012. Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrological Sciences Journal, 57 (4), 738–755.  相似文献   
992.
Abstract

The potential influence of a developing La Niña on Arctic sea-ice annual variability is investigated using both observational data and an atmospheric general circulation model. It is found that during the developing phase of an eastern Pacific (EP) La Niña event in June, July, and August (JJA) and September, October, and November (SON), the sea-ice concentration (SIC) over the Barents–Kara Seas declines more than 15%. The local atmospheric circulation pattern associated with the EP La Niña is characterized as a weak decrease in geopotential height over the Barents–Kara Seas, combined with an anticyclone in the North Atlantic. The corresponding southerly winds push warm waters northward into the key sea-ice reduction region and directly accelerate sea-ice melt. Meanwhile, the abundant moisture contained in the lower troposphere is transported into the Arctic region by winds resulting from the local barotropic structure. The humid atmosphere contributes to both net shortwave and longwave radiation and thus indirectly accelerates the decline in sea ice. Simulations by the European Centre Hamburg Model, version 5.4, are forced by observed sea surface temperature anomalies associated with EP La Niña events. The results of the simulations capture the North Atlantic anticyclone and reproduce the moisture transport, which supports the premise that an EP La Niña plays a crucial role in sea-ice reduction over the Barents–Kara sector from the perspective of atmospheric circulation and net surface heat flux.  相似文献   
993.
Opencast mining alters surface and subsurface hydrology of a landscape both during and post‐mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post‐mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post‐mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass‐balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l−1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
994.
Desert pavements (DPs) are critical for maintaining ecological stability and promoting near-surface hydrological cycling in arid regions. However, few studies have focused on eco-hydrological processes of DPs in the ecological systems of fluvial fans. Although DP surfaces appear to be barren and flat, we found that the surfaces are characterized by surface mosaic patterns of desert pavement (mosaic DP) and bare ground (mosaic BG). We investigated the effects of mosaic DP on water infiltration and vegetation distribution at six sites in fluvial fans (one on a hillside and five within the sectors of fans) along a southwest belt transect in northern Linze County, in the central Hexi Corridor (China). We found significant differences in mosaic DP between the hillside and sector sites in terms of pavement thickness and vesicular horizon thickness (Av thickness), particle composition, and bulk density, although significant differences were absent for mass soil water content, gravel coverage, and surface gravel size. The mosaic DP inhibited water infiltration by the pavement layer, where the sorptivity (S), initial infiltration rate (iint), steady-state infiltration rate (isat) and infiltration time (T) averaged 1.19 cm/min-0.5, 0.64 cm/min, 0.13 cm/min and 12.76 min, respectively. Where the pavement layer was scalped, the S, iint, and isat increased by 0.27 cm/min-0.5, 0.52 cm/min, and 0.40 cm/min, respectively, and the T reduced by 7.42 min. Water infiltration was mainly controlled by the pavement layer thickness (+), Av thickness (−), surface gravel coverage (−), fine earth (+) and fine gravel (−) in the pavement layer. The DP surfaces only had a sparse covering of shrubs, but an abundance of herbs. Few shrubs were present on the mosaic DP, but a greater number of shrubs and herbs grew on the mosaic BG. It can be concluded that DPs can maintain vegetation stability for different surface mosaic patterns. This study deepens our understanding of the eco-hydrological cycle of DP landscapes in arid regions.  相似文献   
995.
There are several methods for determining the spatial distribution and magnitude of groundwater inputs to streams. We compared the results of conventional methods [dye dilution gauging, acoustic Doppler velocimeter (ADV) differential gauging, and geochemical end‐member mixing] to distributed temperature sensing (DTS) using a fibre‐optic cable installed along 900 m of Ninemile Creek in Syracuse, New York, USA, during low‐flow conditions (discharge of 1·4 m3 s?1). With the exception of differential gauging, all methods identified a focused, contaminated groundwater inflow and produced similar groundwater discharge estimates for that point, with a mean of 66·8 l s?1 between all methods although the precision of these estimates varied. ADV discharge measurement accuracy was reduced by non‐ideal conditions and failed to identify, much less quantify, the modest groundwater input, which was only 5% of total stream flow. These results indicate ambient tracers, such as heat and geochemical mixing, can yield spatially and quantitatively refined estimates of relatively modest groundwater inflow even in large rivers. DTS heat tracing, in particular, provided the finest spatial characterization of groundwater inflow, and may be more universally applicable than geochemical methods, for which a distinct and consistent groundwater end member may be more difficult to identify. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
《水文科学杂志》2013,58(4):808-824
Abstract

We report results of three field campaigns conducted at 39 stations. At each station, we measured reflectance spectra in situ and collected water samples for measuring chlorophyll a (CHL) and suspended solids (SS) concentrations in the laboratory. To identify the indicative bands and develop suitable estimation models for CHL (C CHL) and SS (C SS) concentrations in Taihu Lake, a spectral-feature method and a derivative method were applied. The following conclusions were drawn: (a) the critical C CHL and C SS probably causing their spectral variation are, respectively: 0, 10, 50 and 75 μg L?1, and 0, 10, 50 and 100 mg L?1; (b) the derivative method is better than the spectral-feature method for estimating C CHL and C SS; (c) the optimal variable for CHL is a reflectance second-order derivative at 501 nm or a reflectance first-order derivative at 698 nm; the optimal variable for SS can change when its concentration is low and the range is narrow; otherwise, the optimal variable is a reflectance first-order derivative at 878 nm; and (d) the CHL and SS have an effect on one another's retrieval. The C CHL estimation accuracy would benefit from narrowing the C SS range. With C CHL increasing and its range broadening, the corresponding C SS estimation accuracy decreases gradually.  相似文献   
997.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
998.
Understanding the impacts of land‐use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land‐use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and Water Assessment Tool (AVSWAT2000). Model calibration and uncertainty analysis were performed with sequential uncertainty fitting (SUFI‐2). Simulation results from January 1998 to December 2002 were used for parameter calibration, and then the model was validated for the period of January 2003 to December 2004. The predicted monthly streamflow matched the observed values: during calibration the correlation coefficient was 0·86 and the Nash–Sutcliffe coefficient 0·79, compared with 0·80 and 0·79, respectively, during validation. The model was used to simulate the main components of the hydrological cycle, in order to study the effects of land‐use changes in 1967, 1994 and 2007. The study reveals that during 1967 a 34·5% decrease of grassland with concurrent increases of shrubland (13·9%), rain‐fed agriculture (12·1%), bare ground (5·5%) irrigated agriculture (2·2%), and urban area (0·7%) led to a 33% increase in the amount of surface runoff and a 22% decrease in the groundwater recharge. Furthermore, the area of sub‐basins that was influenced by high runoff (14–28 mm) increased. The results indicate that the hydrological response to overgrazing and the replacing of rangelands (grassland and shrubland) with rain‐fed agriculture and bare ground (badlands) is nonlinear and exhibits a threshold effect. The runoff rises dramatically when more than 60% of the rangeland is removed. For groundwater this threshold lies at an 80% decrease in rangeland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
999.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1000.
Abstract

The purpose of this paper is to present the methodology set up to derive catchment soil moisture from Earth Observation (EO) data using microwave spaceborne Synthetic Aperture Radar (SAR) images from ERS satellites and to study the improvements brought about by an assimilation of this information into hydrological models. The methodology used to derive EO data is based on the appropriate selection of land cover types for which the radar signal is mainly sensitive to soil moisture variations. Then a hydrological model is chosen, which can take advantage of the new information brought by remote sensing. The assimilation of soil moisture deduced from EO data into hydrological models is based principally on model parameter updating. The main assumption of this method is that the better the model simulates the current hydrological system, the better the following forecast will be. Another methodology used is a sequential one based on Kalman filtering. These methods have been put forward for use in the European AIMWATER project on the Seine catchment upstream of Paris (France) where dams are operated to alleviate floods in the Paris area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号