首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   37篇
  国内免费   39篇
测绘学   68篇
大气科学   50篇
地球物理   62篇
地质学   39篇
海洋学   29篇
天文学   1篇
综合类   14篇
自然地理   86篇
  2024年   2篇
  2023年   4篇
  2022年   11篇
  2021年   8篇
  2020年   12篇
  2019年   15篇
  2018年   10篇
  2017年   9篇
  2016年   24篇
  2015年   28篇
  2014年   27篇
  2013年   21篇
  2012年   16篇
  2011年   11篇
  2010年   21篇
  2009年   18篇
  2008年   15篇
  2007年   19篇
  2006年   11篇
  2005年   12篇
  2004年   11篇
  2003年   9篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1982年   1篇
排序方式: 共有349条查询结果,搜索用时 79 毫秒
131.
臭氧对水稻叶片伤害、光合作用及产量的影响   总被引:25,自引:0,他引:25  
白月明  郭建平  刘玲  温民 《气象》2001,27(6):17-21
OTC- 1型农田开顶式气室 ,对水稻进行不同臭氧浓度处理的长期接触试验 ,结果表明 :当试验浓度超过 1 0 0× 1 0 - 9时将对水稻叶片造成直接伤害 ,从而使水稻的光合能力和产量降低。  相似文献   
132.
基于1980-2016年全国稻纵卷叶螟逐年发生面积、产量损失资料、逐月74项大气环流特征量以及南方15省(区、市)地面气象资料,采用因子膨化处理技术、Pearson遥相关分析法和逐步回归分析法,筛选对中国稻纵卷叶螟发生面积率有显著影响的大气环流因子,构建中国稻纵卷叶螟发生面积率的多时相动态大气环流预测模型,探讨大气环流对中国稻纵卷叶螟发生的可能影响机制。结果表明:46项大气环流因子与稻纵卷叶螟发生关系密切,副热带高压类、极涡类环流因子是中国稻纵卷叶螟发生面积率的主导影响因子。建立的中国稻纵卷叶螟发生面积率年前、年后3-10月的月动态预测模型历史拟合较好,对2015年、2016年1月初及3-10月各月初外延预报两年平均准确率分别达86.6%,90.5%,91.8%,93.4%,93.4%,94.0%,94.0%,94.3%,95.4%。关键环流特征因子、当年气候年型和稻区5-9月气象条件对中国稻纵卷叶螟的发生程度具有较好的指示效应,稻纵卷叶螟发生面积率较大的年份主要出现在干暖年和湿暖年;干冷年型常导致稻纵卷叶螟发生面积率偏小。  相似文献   
133.
李军  杨秋珍  汪治澜 《气象》1998,24(4):50-53
根据对不同播种期鸡毛菜的抽样测定资料,采用植物生长模型结合鸡毛菜生产期间9 ̄25℃的有效积温对叶龄进行估算,叶龄估算的绝对误差在0.5叶之内。  相似文献   
134.
永泰李农业地质背景与李叶片营养诊断   总被引:1,自引:0,他引:1  
夏春金 《福建地质》1998,17(2):85-93
通过对永泰县不同地质背景区李叶片的采集和测试矿质元素含量,分析了各区李叶营养状况。认为,要根据不同李园、不同季节的叶片营养状况,以及各地质背景区土壤矿质元素丰缺和有效态元素含量多少,进行对症施肥,以提高李果产量和品质。  相似文献   
135.
Spatial and temporal variation in wet canopy conditions following precipitation events can influence processes such as transpiration and photosynthesis, which can be further enhanced as upper canopy leaves dry more rapidly than the understory following each event. As part of a larger study aimed at improving land surface modelling of evapotranspiration processes in wet tropical forests, we compared transpiration among trees with exposed and shaded crowns under both wet and dry canopy conditions in central Costa Rica, which has an average 4200 mm annual rainfall. Transpiration was estimated for 5 months using 43 sap flux sensors in eight dominant, ten midstory and eight suppressed trees in a mature forest stand surrounding a 40‐m tower equipped with micrometeorological sensors. Dominant trees were 13% of the plot's trees and contributed around 76% to total transpiration at this site, whereas midstory and suppressed trees contributed 18 and 5%, respectively. After accounting for vapour pressure deficit and solar radiation, leaf wetness was a significant driver of sap flux, reducing it by as much as 28%. Under dry conditions, sap flux rates (Js) of dominant trees were similar to midstory trees and were almost double that of suppressed trees. On wet days, all trees had similarly low Js. As expected, semi‐dry conditions (dry upper canopy) led to higher Js in dominant trees than midstory, which had wetter leaves, but semi‐dry conditions only reduced total stand transpiration slightly and did not change the relative proportion of transpiration from dominant and midstory. Therefore, models that better capture forest stand wet–dry canopy dynamics and individual tree water use strategies are needed to improve accuracy of predictions of water recycling over tropical forests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
136.
137.
The temporal dynamics of two seagrass species, Zostera marina and Z. japonica, were monitored monthly in Dadae Bay, Geoje Island, on the southern coast of Korea. Plant morphological characteristics, shoot density, biomass, leaf production, reproductive effort, and environmental characteristics were monitored from July 2001 to July 2002. Zostera japonica occurred in the intertidal zone and Z. marina occurred in the subtidal zone from 0.5 to 2.5 m below the mean low water level. Shoots and rhizomes were significantly larger in Z. marina than in Z. japonica, whereas the shoot density was greater in Z. japonica than in Z. marina. Despite differences in morphology and shoot density, biomass did not differ significantly between the species. Reproduction occurred from April to June in Z. marina and from May to July in Z. japonica. The proportion of reproductive shoots was approximately three times higher in Z. marina than in Z. japonica. Seasonal variation in the biomass of Z. japonica was caused by changes in both shoot size and density, whereas that of Z. marina was mainly caused by changes in shoot length. Leaf production in Z. marina and Z. japonica showed clear seasonal variation, and leaf production in Z. marina (2.6 ± 0.2 g DW·m−2·day−1) was higher than that in Z. japonica (1.7 ± 0.2 g DW·m−2·day−1). The mean plastochrone interval was not significantly different between the two species, whereas the leaf lifetime of Z. marina was longer (69 ± 7.8 days) than that of Z. japonica (59 ± 8.3 days). Our results indicated that seasonal leaf growth patterns in Z. japonica are correlated with irradiance and temperature, whereas those in Z. marina respond most to irradiance. Seasonal changes in irradiance appeared to control the temporal variation in above‐ground biomass in both species.  相似文献   
138.
Sediment deposition and production in SE-Asia seagrass meadows   总被引:1,自引:0,他引:1  
Seagrass meadows play an important role in the trapping and binding of particles in coastal sediments. Yet seagrass may also contribute to sediment production directly, through the deposition of detritus and also the deposition of the associated mineral particles. This study aims at estimating the contribution of different seagrass species growing across an extensive range of deposition to inorganic (carbonate and non-carbonate) and organic sediment production. Total daily deposition measured with sediment traps varied from 18.8 (±2.0) g DW m−2 d−1 in Silaqui (Philippines) to 681.1 (±102) g DW m−2 d−1 in Bay Tien (Vietnam). These measurements correspond to a single sampling event and represent sedimentation conditions during the dry season in SE-Asia coastal areas. Enhalus acoroides was the most common species in the seagrass meadows visited and, together with Thalassia hemprichii, was present at sites from low to very high deposition. Halodule uninervis and Cymodocea species were present in sites from low to medium deposition. The mineral load in seagrass leaves increased with age, and was high in E. acoroides because it had the largest and long-lived leaves (up to 417 mg calcium carbonate per leaf and 507 mg non-carbonate minerals per leaf) and low in H. uninervis with short-lived leaves (4 mg calcium carbonate per leaf and 2 mg non-carbonate minerals per leaf). In SE-Asia seagrass meadows non-carbonate minerals accumulate at slower rates than the production of calcium carbonate by the epiphytic community, consequently the final loads supported by fully grown leaves were, as average, lower than calcium carbonate loads. Our results show that organic and inorganic production of the seagrasses in SE-Asia represents a small contribution (maximum of 15%) of the materials sedimented on a daily base by the water column during the sampling period. The contribution of the carbonate fraction can be locally significant (i.e. 34% in Silaqui) in areas where the depositional flux is low, but is minor (<1%) in sites were siltation is significant (i.e. Umalagan and all the visited sites in Vietnam).  相似文献   
139.
大亚湾红树林与海岸植物叶片气孔特征及其发育   总被引:5,自引:0,他引:5  
缪绅裕  王厚麟 《台湾海峡》2001,20(2):251-258
光镜下观察了大亚湾地区红树林及海岸20种植物叶片气孔的结构特征及部分植物气孔器的发育过程。结果表明:大部分植物仅下表皮具气孔;气孔类型有无规则、平列、环绕、横列和四轮列型;气孔指数和气孔密度不同植物间变化较大;保卫细胞以卤蕨最大,阔苞菊最小;气孔开张度以桐花树最大,阔苞菊最小。高盐度对秋茄、木榄幼苗叶片气孔器的发生发育有一定抑制作用。海芒果、海漆的气孔器发育为周源型,而木榄、秋茄为中源型。多数真红树植物气孔在表皮下陷,发生于保卫细胞形成之后,气孔特征及其发育表现出生活于相同海岸带的不同植物既有相似性又有多样性。  相似文献   
140.
In the past several decades, dynamic global vegetation models(DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM(IAP-DGVM) has been developed and coupled to the Common Land Model(CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model(CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM(CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM,including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号