首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9234篇
  免费   964篇
  国内免费   990篇
测绘学   3837篇
大气科学   609篇
地球物理   1455篇
地质学   2126篇
海洋学   951篇
天文学   213篇
综合类   743篇
自然地理   1254篇
  2024年   43篇
  2023年   112篇
  2022年   384篇
  2021年   455篇
  2020年   468篇
  2019年   463篇
  2018年   333篇
  2017年   481篇
  2016年   477篇
  2015年   494篇
  2014年   470篇
  2013年   640篇
  2012年   509篇
  2011年   501篇
  2010年   425篇
  2009年   511篇
  2008年   527篇
  2007年   569篇
  2006年   490篇
  2005年   439篇
  2004年   416篇
  2003年   322篇
  2002年   305篇
  2001年   236篇
  2000年   187篇
  1999年   157篇
  1998年   171篇
  1997年   150篇
  1996年   94篇
  1995年   66篇
  1994年   64篇
  1993年   37篇
  1992年   51篇
  1991年   34篇
  1990年   23篇
  1989年   21篇
  1988年   11篇
  1987年   13篇
  1986年   10篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
为了更好地提取影像阴影部分的信息,本文采用一种顾及地物间空间关系的水系提取方法,将地物之间的空间关系与面向对象的方法相结合。通过多尺度分割算法生成同质的影像对象,利用决策树、隶属度函数和阴影与建筑物的邻接关系对水体进行提取。以昆明某区域影像为实验数据进行了试验,试验结果表明,所提出的方法可以有效解决阴影对水系提取造成的影响,大大提高了水系提取的精度。  相似文献   
72.
摄影测量进入数字时代以来,ADS80因其独特的优势逐步成为航摄影像获取的主流平台,对ADS80数据后续快速处理也成为目前数据处理软件研究的重点。本文介绍了基于像素工厂系统快速处理ADS80数据的技术流程和数据处理的主要技术环节,总结了像素工厂系统数据处理的优劣势。通过实际项目实践,验证了基于像素工厂系统处理ADS80数据的可靠性与高效性。  相似文献   
73.
Land-use/land-cover information constitutes an important component in the calibration of many urban growth models. Typically, the model building involves a process of historic calibration based on time series of land-use maps. Medium-resolution satellite imagery is an interesting source for obtaining data on land-use change, yet inferring information on the use of urbanised spaces from these images is a challenging task that is subject to different types of uncertainty. Quantifying and reducing the uncertainties in land-use mapping and land-use change model parameter assessment are therefore crucial to improve the reliability of urban growth models relying on these data. In this paper, a remote sensing-based land-use mapping approach is adopted, consisting of two stages: (i) estimating impervious surface cover at sub-pixel level through linear regression unmixing and (ii) inferring urban land use from urban form using metrics describing the spatial structure of the built-up area, together with address data. The focus lies on quantifying the uncertainty involved in this approach. Both stages of the land-use mapping process are subjected to Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The robustness to uncertainty of the land-use mapping strategy is addressed by comparing the most likely land-use maps obtained from the simulation with the original land-use map, obtained without taking uncertainty into account. The approach was applied on the Brussels-Capital Region and the central part of the Flanders region (Belgium), covering the city of Antwerp, using a time series of SPOT data for 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original land-use map – indicating absence of bias in the mapping process – it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, uncertainties observed in the derived land-use maps should be taken into account when using these maps as an input for modelling of urban growth.  相似文献   
74.
Mapping of habitats with relevance for nature conservation involves the identification of patches of target habitats in a complex mosaic of vegetation types not relevant for conservation planning. Limiting the necessary ground reference to a small sample of target habitats would greatly reduce and therefore support the field mapping effort. We thus aim to answer in this study the question: can semi-automated remote sensing methods help to map such patches without the need of ground references from sites not relevant for nature conservation? Approaches able to fulfill this task may help to improve the efficiency of large scale mapping and monitoring programs such as requested for the European Habitat Directive.In the present study, we used the maximum-entropy based classification approach Maxent to map four habitat types across a patchy landscape of 1000 km2 near Munich, Germany. This task was conducted using the low number of 125 ground reference points only along with easily available multi-seasonal RapidEye satellite imagery. Encountered problems include the non-stationarity of habitat reflectance due to different phenological development across space, continuous transitions between the habitats and the need for improved methods for detailed validation.The result of the tested approach is a habitat map with an overall accuracy of 70%. The rather simple and affordable approach can thus be recommended for a first survey of previously unmapped areas, as a tool for identifying potential gaps in existing habitat inventories and as a first check for changes in the distribution of habitats.  相似文献   
75.
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity–hue–saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.  相似文献   
76.
A non-linear iterative method is used to replace the traditional spectral slope technique in initializing the total absorption decomposition model. Based on comparison of absorption coefficient by QAA and two-band semi-analytical model (TSAA) models with field measurements collected from the West Florida Shelf waters and Bohai Sea, it is shown that both models are effective in estimating absorption coefficients from the West Florida Shelf waters, but the TSAA model is superior to the QAA model. Use of the TSAA model in estimating absorption coefficient in the West Florida Shelf and Bohai Sea decreases the uncertainty of estimation by 1.3–74.7% from the QAA model. The TSAA model’s sensitivity to the input parameters was evaluated by varying one parameter and keeping the others fixed at their default values. Our results indicate that the TSAA model has quite a strong noise tolerance to addressing the field data of the total absorption coefficient.  相似文献   
77.
Remotely and accurately quantifying the canopy nitrogen status in crops is essential for regional studies of N budgets and N balances. In this study, we optimised three-band spectral algorithms to estimate the N status of winter wheat. This study extends previous work to optimise the band combinations further and identifies the optimised central bands and suitable bandwidths of the three-band nitrogen planar domain index (NPDI) for estimating the aerial N uptake, N concentration and aboveground biomass. Analysis of the influence of bandwidth change on the accuracy of estimating the canopy N status and aboveground biomass indicated that the suitable bandwidths for optimised central bands were 37 nm at 846 nm, 13 nm at 738 nm and 57 nm at 560 nm for assessing the aerial N uptake and were 37 nm at 958 nm, 21 nm at 696 nm and 73 nm at 578 nm for the assessment of the aerial N concentration and were 49 nm at 806 nm, 17 nm at 738 nm and 57 nm at 560 nm for the estimation of aboveground biomass. The optimised three-band NPDI could consistently and stably estimate the aerial N uptake and aboveground biomass of winter wheat in the vegetative stage and the aerial N concentration in the reproductive stage compared to the fixed band combinations. With suitable bandwidths, the broadband NPDI demonstrated excellent performance in estimating the aerial N concentration, N uptake and biomass. We conclude that the band-optimised algorithm represents a promising tool to measure the improved performance of the NPDI in estimating the aerial N uptake and biomass in the vegetative stage and the aerial N concentration in the reproductive stage, which will be useful for designing improved nitrogen diagnosis systems and for enhancing the applications of ground- and satellite-based sensors.  相似文献   
78.
Soil respiration (Rs) is of great importance to the global carbon balance. Remote sensing of Rs is challenging because of (1) the lack of long-term Rs data for model development and (2) limited knowledge of using satellite-based products to estimate Rs. Using 8-years (2002–2009) of continuous Rs measurements with nonsteady-state automated chamber systems at a Canadian boreal black spruce stand (SK-OBS), we found that Rs was strongly correlated with the product of the normalized difference vegetation index (NDVI) and the nighttime land surface temperature (LSTn) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. The coefficients of the linear regression equation of this correlation between Rs and NDVI × LSTn could be further calibrated using the MODIS leaf area index (LAI) product, resulting in an algorithm that is driven solely by remote sensing observations. Modeled Rs closely tracked the seasonal patterns of measured Rs and explained 74–92% of the variance in Rs with a root mean square error (RMSE) less than 1.0 g C/m2/d. Further validation of the model from SK-OBS site at another two independent sites (SK-OA and SK-OJP, old aspen and old jack pine, respectively) showed that the algorithm can produce good estimates of Rs with an overall R2 of 0.78 (p < 0.001) for data of these two sites. Consequently, we mapped Rs of forest landscapes of Saskatchewan using entirely MODIS observations for 2003 and spatial and temporal patterns of Rs were well modeled. These results point to a strong relationship between the soil respiratory process and canopy photosynthesis as indicated from the greenness index (i.e., NDVI), thereby implying the potential of remote sensing data for detecting variations in Rs. A combination of both biological and environmental variables estimated from remote sensing in this analysis may be valuable in future investigations of spatial and temporal characteristics of Rs.  相似文献   
79.
The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.  相似文献   
80.
DMSP-OLS夜间灯光遥感数据截至2013年,现已被NPP-VIIRS夜间灯光数据取代。因此,要获得长时间序列且稳定的夜间灯光数据集,需要整合两类夜间灯光数据。基于此,本文提出了基于重采样的两类数据整合方法,对2013—2020年NPP-VIIRS数据进行模拟,最终建立了1992—2020年长时间序列校正—模拟DMSP-OLS夜光遥感数据集。结果表明,基于重采样的整合方法效果良好(城市区域Pearson相关系数ρ=0.9852,RMSE=3.4607),整合数据集与相关社会经济参考量高度契合(影像DN值总和与GDP的相关系数ρ=0.946,与人口的相关系数ρ=0.971,二次多项式模型拟合R2≈0.98,RMSE<5.55),优于已有研究。因此,利用该方法整合后的数据集能更好地支撑基于夜间灯光影像的长时间序列研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号