首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7523篇
  免费   1323篇
  国内免费   1375篇
测绘学   1748篇
大气科学   1207篇
地球物理   2049篇
地质学   2140篇
海洋学   1049篇
天文学   679篇
综合类   691篇
自然地理   658篇
  2024年   19篇
  2023年   76篇
  2022年   196篇
  2021年   239篇
  2020年   260篇
  2019年   383篇
  2018年   242篇
  2017年   343篇
  2016年   336篇
  2015年   356篇
  2014年   399篇
  2013年   503篇
  2012年   456篇
  2011年   535篇
  2010年   432篇
  2009年   535篇
  2008年   488篇
  2007年   588篇
  2006年   534篇
  2005年   452篇
  2004年   406篇
  2003年   329篇
  2002年   296篇
  2001年   245篇
  2000年   234篇
  1999年   210篇
  1998年   195篇
  1997年   166篇
  1996年   144篇
  1995年   108篇
  1994年   122篇
  1993年   80篇
  1992年   81篇
  1991年   60篇
  1990年   32篇
  1989年   40篇
  1988年   21篇
  1987年   17篇
  1986年   12篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   8篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
121.
The classic Lagrange's expansion of the solutionE(e, M) of Kepler's equation in powers of eccentricity is extended to highly eccentric orbits, 0.6627 ... <e<1. The solutionE(e, M) is developed in powers of (e–e*), wheree* is a fixed value of the eccentricity. The coefficients of the expansion are given in terms of the derivatives of the Bessel functionsJ n (ne). The expansion is convergent for values of the eccentricity such that |e–e*|<(e*), where the radius of convergence (e*) is a positive real number, which is calculated numerically.  相似文献   
122.
Many stochastic process models for environmental data sets assume a process of relatively simple structure which is in some sense partially observed. That is, there is an underlying process (Xn, n 0) or (Xt, t 0) for which the parameters are of interest and physically meaningful, and an observable process (Yn, n 0) or (Yt, t 0) which depends on the X process but not otherwise on those parameters. Examples are wide ranging: the Y process may be the X process with missing observations; the Y process may be the X process observed with a noise component; the X process might constitute a random environment for the Y process, as with hidden Markov models; the Y process might be a lower dimensional function or reduction of the X process. In principle, maximum likelihood estimation for the X process parameters can be carried out by some form of the EM algorithm applied to the Y process data. In the paper we review some current methods for exact and approximate maximum likelihood estimation. We illustrate some of the issues by considering how to estimate the parameters of a stochastic Nash cascade model for runoff. In the case of k reservoirs, the outputs of these reservoirs form a k dimensional vector Markov process, of which only the kth coordinate process is observed, usually at a discrete sample of time points.  相似文献   
123.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   
124.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
125.
There is a correspondence between flow in a reservoir and large scale permeability trends. This correspondence can be derived by constraining reservoir models using observed production data. One of the challenges in deriving the permeability distribution of a field using production data involves determination of the scale of resolution of the permeability. The Adaptive Multiscale Estimation (AME) seeks to overcome the problems related to choosing the resolution of the permeability field by a dynamic parameterisation selection. The standard AME uses a gradient algorithm in solving several optimisation problems with increasing permeability resolution. This paper presents a hybrid algorithm which combines a gradient search and a stochastic algorithm to improve the robustness of the dynamic parameterisation selection. At low dimension, we use the stochastic algorithm to generate several optimised models. We use information from all these produced models to find new optimal refinements, and start out new optimisations with several unequally suggested parameterisations. At higher dimensions we change to a gradient-type optimiser, where the initial solution is chosen from the ensemble of models suggested by the stochastic algorithm. The selection is based on a predefined criterion. We demonstrate the robustness of the hybrid algorithm on sample synthetic cases, which most of them were considered insolvable using the standard AME algorithm.  相似文献   
126.
We studied the temporal behavior of the background shallow seismicity rate in 700 circular areas across inland Japan. To search for and test the significance of the possible rate changes in background seismicity, we developed an efficient computational method that applies the space–time ETAS model proposed by Ogata in 1998 to the areas. Also, we conducted Monte Carlo tests using a simulated catalog to validate the model we applied. Our first finding was that the activation anomalies were found so frequently that the constant background seismicity hypothesis may not be appropriate and/or the triggered event model with constraints on the parameters may not adequately describe the observed seismicity. However, quiescence occasionally occurs merely by chance. Another outcome of our study was that we could automatically find several anomalous background seismicity rate changes associated with the occurrence of large earthquakes. Very significant seismic activation was found before the M6.1 Mt. Iwate earthquake of 1998. Also, possible seismic quiescence was found in an area 150 km southwest of the focal region of the M7.3 Western Tottori earthquake of 2000. The seismicity rate in the area recovered after the mainshock.  相似文献   
127.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号