首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7032篇
  免费   702篇
  国内免费   538篇
测绘学   1230篇
大气科学   511篇
地球物理   1010篇
地质学   1854篇
海洋学   1666篇
天文学   29篇
综合类   585篇
自然地理   1387篇
  2024年   14篇
  2023年   34篇
  2022年   136篇
  2021年   198篇
  2020年   234篇
  2019年   234篇
  2018年   175篇
  2017年   325篇
  2016年   267篇
  2015年   309篇
  2014年   390篇
  2013年   490篇
  2012年   404篇
  2011年   441篇
  2010年   378篇
  2009年   407篇
  2008年   474篇
  2007年   438篇
  2006年   453篇
  2005年   369篇
  2004年   313篇
  2003年   228篇
  2002年   280篇
  2001年   217篇
  2000年   173篇
  1999年   183篇
  1998年   127篇
  1997年   113篇
  1996年   73篇
  1995年   70篇
  1994年   56篇
  1993年   54篇
  1992年   33篇
  1991年   23篇
  1990年   25篇
  1989年   22篇
  1988年   22篇
  1987年   19篇
  1986年   9篇
  1985年   15篇
  1984年   18篇
  1983年   13篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1978年   1篇
  1971年   1篇
排序方式: 共有8272条查询结果,搜索用时 468 毫秒
961.
《China Geology》2019,2(2):121-132
Sand production is a crucial problem during the process of extracting natural gas from hydrate reservoirs. To deal with sand-production problems systematically, a sand-production control system (SCS) is first proposed in this paper, specialized for pore-distributed clayey silt hydrate reservoirs. Secondly, a nodal system analysis method (NSAM) is applied to analyze the sand migration process during hydrate exploitation. The SCS is divided into three sub-systems, according to different sand migration mechanisms, and three key scientific problems and advances in SCS research in China Geological Survey are reviewed and analyzed. The maximum formation sanding rate, proper sand-control gravel size, and borehole blockage risk position were provided for clayey hydrate exploitation wells based on the SCS analysis. The SCS sub-systems are closely connected via bilateral coupling, and coordination of the subsystems is the basis of maintaining formation stability and prolonging the gas production cycle. Therefore, contradictory mitigation measures between sand production and operational systems should be considered preferentially. Some novel and efficient hydrate exploitation methods are needed to completely solve the contradictions caused by sand production.© 2019 China Geology Editorial Office.  相似文献   
962.
大气沉降是陆源物质向海洋输入营养盐的重要方式,沙尘、野火和火山喷发均能够产生气溶胶,这些典型的自然源气溶胶在风场的作用下,能够进行远距离的输运,期间由于沉降作用进入海洋,为上层海洋提供限制性营养盐促进海洋浮游植物生长,提升海洋的初级生产力,促进碳循环过程。以海表叶绿素浓度作为海洋初级生产力的重要指标,通过海表叶绿素浓度的响应,探究沙尘、野火和火山这三种典型自然源气溶胶的传输路径及其沉降对海洋初级生产的影响。结果显示,海洋初级生产对气溶胶沉降的响应不仅与气溶胶排放类型有关,也与温度、动力过程、光合有效辐射等海域初级生产影响因素有关,体现了海洋初级生产对自然源气溶胶的敏感性,自然源气溶胶沉降所驱动的海洋初级生产在全球碳循环中具有重要的潜在影响。  相似文献   
963.
沙滩质量评价是有效的沙滩管理工具。“蓝旗”标准是目前世界上认可度最高的沙滩评价标准。文章基于“蓝旗”标准,根据国内外已有沙滩质量评价体系,结合实地调研和问卷调查,构建适用于万平口沙滩的质量评价体系。评价结果表明:(1)万平口环境因素、安全与教育和环境管理准则层评价结果均为良好,社会因素准则层达到优质等级,说明万平口风景区作为旅游地,其气候条件适宜,服务水平和安全及教育水平都较为发达。(2)万平口沙滩的自然条件本底优良,是最能体现日照“蓝天、碧海、金沙滩”的特色景区。但由于自然及人为因素造成的沙滩侵蚀退化现象严重,影响了沙滩的可持续发展。根据评价结果及万平口与“蓝旗沙滩”的对比差异,认为万平口建设“蓝旗沙滩”,需要完善景区水质监测、加强景区内及周边环境管理、重视沙滩养护、完善基础设施的投放、进一步提高景区的服务水平、重视景区内安全保障及加强景区的宣传,提高公众对“蓝旗”的认知度。  相似文献   
964.
Rui Guo  Yiping Guo  Jun Wang 《水文研究》2018,32(17):2708-2720
An approach based on individual rainfall events is introduced to mathematically describe the hydrologic responses and estimate the stormwater capture efficiencies of permeable pavement systems (PPSs). A stochastic model describing the instantaneous dynamic water balance of a PPS is established, from which the probability distribution of the antecedent moisture content of the PPS at the beginning of a rainfall event is analytically derived. Based on this probability distribution and the event‐based approach, an analytical equation that can be used for estimating the stormwater capture efficiencies of PPSs is also derived. The derived analytical equation is verified by comparing its results with those from continuous simulations for a wide range of PPSs with different sizes and underlying soils and operating under various climate conditions. It was found that the antecedent moisture contents of PPSs at the test locations are usually fairly close to zero, suggesting that PPSs at these locations are always almost empty at the start of a rainfall event. The derived analytical equation accounts for many key processes influencing the behaviour and operation of PPSs; it may serve as an easy‐to‐use tool that is essential for the planning and design of PPSs.  相似文献   
965.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
966.
Animal husbandry and crop farming are specialized for development in separate areas on the Tibetan Plateau. Such a pattern of isolation has led to current concerns of rangeland and farming system degradation due to intensive land use. The crop-livestock integration, however, has been proven to increase food and feed productivity thorough niche complementarity, and is thereby especially effective for promoting ecosystem resilience. Regional synergy has emerged as an integrated approach to reconcile rangeland livestock with forage crop production. It moves beyond the specialized sectors of animal husbandry and intensive agriculture to coordinate them through regional coupling. Therefore, crop-livestock integration (CLI) has been suggested as one of the effective solutions to forage deficit and livestock production in grazing systems. But it is imperative that CLI moves forward from the farm level to the regional scale, in order to secure regional synergism during agro-pastoral development. The national key R & D program, Technology and Demonstration of Recovery and Restoration of Degraded Alpine Ecosystems on the Tibetan Plateau, aims to solve the problems of alpine grassland degradation by building up a grass-based animal husbandry technology system that includes synergizing forage production and ecological functioning, reconciling the relationship between ecology, forage production and animal husbandry, and achieving the win-win goals of curbing grassland degradation and changing the development mode of animal husbandry. It is imperative to call for regional synergy through integrating ecological functioning with ecosystem services, given the alarming threat of rangeland degradation on the Tibetan Plateau. The series of papers in this issue, together with those published previously, provide a collection of rangeland ecology and management studies in an effort to ensure the sustainable use and management of the alpine ecosystems.  相似文献   
967.
968.
Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer-reviewed studies of watershed-scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta-analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM-mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale.  相似文献   
969.
ABSTRACT

Despite a notable increase in the literature on community resilience, the notion of ‘community’ remains underproblematised. This is evident within flood risk management (FRM) literature, in which the understanding and roles of communities may be acknowledged but seldom discussed in any detail. The purpose of the article is to demonstrate how community networks are configured by different actors, whose roles and responsibilities span spatial scales within the context of FRM. Accordingly, the authors analyse findings from semi-structured interviews, policy documents, and household surveys from two flood prone areas in Finnish Lapland. The analysis reveals that the ways in which authorities, civil society, and informal actors take on multiple roles are intertwined and form different types of networks. By implication, the configuration of community is fuzzy, elusive and situated, and not confined to a fixed spatiality. The authors discuss the implications of the complex nature of community for FRM specifically, and for community resilience more broadly. They conclude that an analysis of different actors across scales contributes to an understanding of the configuration of community, including community resilience, and how the meaning of community takes shape according to the differing aims of FRM in combination with differing geographical settings.  相似文献   
970.
Regression-based methods are commonly used for riverine constituent concentration/flux estimation, which is essential for guiding water quality protection practices and environmental decision making. This paper developed a multivariate adaptive regression splines model for estimating riverine constituent concentrations (MARS-EC). The process, interpretability and flexibility of the MARS-EC modelling approach, was demonstrated for total nitrogen in the Patuxent River, a major river input to Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was further analysed using nitrate plus nitrite datasets from eight tributary rivers to Chesapeake Bay. Results showed that the MARS-EC approach integrated the advantages of both parametric and nonparametric regression methods, and model accuracy was demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC is flexible and allows consideration of auxiliary variables; the variables and interactions can be selected automatically. MARS-EC does not constrain concentration-predictor curves to be constant but rather is able to identify shifts in these curves from mathematical expressions and visual graphics. The MARS-EC approach provides an effective and complementary tool along with existing approaches for estimating riverine constituent concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号