首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   176篇
  国内免费   176篇
测绘学   218篇
大气科学   383篇
地球物理   287篇
地质学   137篇
海洋学   69篇
天文学   182篇
综合类   43篇
自然地理   38篇
  2024年   6篇
  2023年   16篇
  2022年   18篇
  2021年   33篇
  2020年   37篇
  2019年   51篇
  2018年   32篇
  2017年   39篇
  2016年   41篇
  2015年   50篇
  2014年   55篇
  2013年   67篇
  2012年   55篇
  2011年   63篇
  2010年   69篇
  2009年   72篇
  2008年   68篇
  2007年   92篇
  2006年   71篇
  2005年   64篇
  2004年   46篇
  2003年   34篇
  2002年   40篇
  2001年   26篇
  2000年   28篇
  1999年   28篇
  1998年   23篇
  1997年   18篇
  1996年   10篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   17篇
  1991年   14篇
  1990年   11篇
  1989年   6篇
  1988年   11篇
  1987年   4篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有1357条查询结果,搜索用时 15 毫秒
61.
应用探地雷达进行城市地下管道的探查已经在市政工程中广泛采用,但是利用探地雷达进行地下管道泄漏的探查在我国尚未被广泛采用。本文研究了探地雷达在城市地下供水管道渗漏探查中的应用。首先利用Geo-studio软件模拟了不同工况下的管线渗流情况,分析了不同管线大小,不同渗漏位置与不同时间下的渗漏区的分布、渗漏部位含水量发育特征等几何和物理参数;在此基础上,通过采用GprMax探地雷达正演模拟软件对管道的渗漏进行了病害正演,建立了不同埋深、不同管线大小、不同渗漏位置和程度的系列探地雷达响应特征数据。为实际利用探地雷达探测城市供水管道渗漏提供了基础的参数数据和识别参考。  相似文献   
62.
The new Solar telescope GREGOR is designed to observe small‐scale dynamic magnetic structures below a size of 70 km on the Sun with high spectral resolution and polarimetric accuracy. For this purpose, the polarimetric concept of GREGOR is based on a combination of post‐focus polarimeters with pre‐focus equipment for high precision calibration. The Leibniz‐Institute for Astrophysics Potsdam developed the GREGOR calibration unit which is an integral part of the telescope. We give an overview of the function and design of the calibration unit and present the results of extensive testing series done in the Solar Observatory “Einsteinturm” and at GREGOR (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
63.
We present the largest sample of high-mass star-forming regions observed using submillimetre imaging polarimetry. The data were taken using the Submillimetre Common User Bolometer Array (SCUBA) in conjunction with the polarimeter on the James Clerk Maxwell Telescope (JCMT) in Hawaii. In total, 16 star-forming regions were observed, although some of these contain multiple cores. The polarimetry implies a variety of magnetic field morphologies, with some very ordered fields. We see a decrease in polarization percentage for seven of the cores. The magnetic field strengths estimated for 14 of the cores, using the corrected Chandrasekhar and Fermi (CF) method, range from <0.1 mG to almost 6 mG. These magnetic fields are weaker on these large scales when compared to previous Zeeman measurements from maser emission, implying the role of the magnetic field in star formation increases in importance on smaller scales. Analysis of the alignment of the mean field direction and the outflow directions reveals no relation for the whole sample, although direct comparison of the polarimetry maps suggests good alignment (to at least one outflow direction per source) in seven out of the 15 sources with outflows.  相似文献   
64.
选取2018年夏季邵阳地区的17个雷暴单体和9个非雷暴单体,分析了单体30 dBz、35 dBz和40 dBz回波顶高及0℃、-10℃和-20℃层超过30 dBz、35 dBz和40 dBz的回波面积与闪电发生的关系,利用40 dBz回波顶高、-10℃层以上超过40 dBz的回波面积及其与单体总面积的百分比对该地区闪电...  相似文献   
65.
A 7 year survey using the Canadian Meteor Orbit Radar (CMOR), a specular backscattering orbital radar, has produced three million individually measured meteoroid orbits for particles with mean mass near 10−7 kg. We apply a 3D wavelet transform to our measured velocity vectors, partitioning them into 1° solar longitude bins while stacking all 7 years of data into a single “virtual” year to search for showers which show annual activity and last for at least 3 days. Our automated stream search algorithm has identified 117 meteor showers. We have recovered 42 of the 45 previously described streams from our first reconnaissance survey (Brown, P., Weryk, R.J., Wong, D.K., Jones, J. [2008]. Icarus 195, 317-339). Removing possible duplicate showers from the automated results leaves 109 total streams. These include 42 identified in survey I and at least 62 newly identified streams. Our large data sample and the enhanced sensitivity of the 3D wavelet search compared to our earlier survey have allowed us to extend the period of activity for several major showers. This includes detection of the Geminid shower from early November to late December and the Quadrantids from early November to mid-January. Among our newly identified streams are the Theta Serpentids which appears to be derived from 2008 KP and the Canum Venaticids which have a similar orbit to C/1975 X1 (Sato). We also find evidence that nearly 60% of all our streams are part of seven major stream complexes, linked via secular invariants.  相似文献   
66.
67.
The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling.However,there is much uncertainty in the assimilation process,which affects the assimilation results.This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter(EnKF)and Genetic Algorithm(GA).A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model(DHSVM)was coupled with a semi-empirical backscattering model(Oh).The Advanced Synthetic Apertture Radar(ASAR)data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment.In order to improve the assimilation results,a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR.The EnKF and GA were used to re-initialize and re-parameterize the simulation process,respectively.The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data.The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.  相似文献   
68.
We present the design concept of the spectropolarimeter for the high‐resolution echelle spectrograph PEPSI tobe installed at the 2 × 8.4 m Large Binocular Telescope (LBT) in Arizona. We discuss the optical key elements, the principles of operations of the instrument and its instrumental polarization effects (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
69.
M.A. Janssen  A. Le Gall 《Icarus》2011,212(1):321-328
Since Cassini arrived at Saturn in 2004, its moon Titan has been thoroughly mapped by the RADAR instrument at 2-cm wavelength, in both active and passive modes. Some regions on Titan, including Xanadu and various bright hummocky bright terrains, contain surfaces that are among the most radar-bright encountered in the Solar System. This high brightness has been generally attributed to volume scattering processes in the inhomogeneous, low-loss medium expected for a cold, icy satellite surface. We can test this assumption now that the emissivity has been obtained from the concurrent radiometric measurements for nearly all the surface, with unprecedented accuracy (Janssen et al., and the Cassini RADAR Team [2009]. Icarus 200, 222-239). Kirchhoff’s law of thermal radiation relates the radar and radiometric properties in a way that has never been fully exploited. In this paper we examine here how this law may be applied in this case to better understand the nature of Titan’s radar-bright regions. We develop a quantitative model that, when compared to the observational data, allows us to conclude that either the reflective characteristics of the putative volume scattering subsurface must be highly constrained, or, more likely, organized structure on or in the surface is present that enhances the backscatter.  相似文献   
70.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号