首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2975篇
  免费   575篇
  国内免费   787篇
测绘学   367篇
大气科学   313篇
地球物理   922篇
地质学   1456篇
海洋学   507篇
天文学   87篇
综合类   257篇
自然地理   428篇
  2024年   13篇
  2023年   42篇
  2022年   127篇
  2021年   137篇
  2020年   164篇
  2019年   211篇
  2018年   171篇
  2017年   188篇
  2016年   180篇
  2015年   187篇
  2014年   203篇
  2013年   238篇
  2012年   192篇
  2011年   212篇
  2010年   186篇
  2009年   222篇
  2008年   184篇
  2007年   201篇
  2006年   200篇
  2005年   141篇
  2004年   132篇
  2003年   106篇
  2002年   101篇
  2001年   83篇
  2000年   103篇
  1999年   63篇
  1998年   46篇
  1997年   50篇
  1996年   53篇
  1995年   32篇
  1994年   34篇
  1993年   24篇
  1992年   18篇
  1991年   14篇
  1990年   21篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4337条查询结果,搜索用时 224 毫秒
91.
The first sign of magma accumulating beneath Miyakejima, an island volcano in the northern Izu islands, Japan, came at around 18:00 on 26 June 2000, when a swarm of earthquakes was detected by a volcano seismic network on the island. Earthquakes occurred initially beneath the southwest flank near the summit and gradually migrated west of the island, where a submarine eruption occurred the next morning. Earthquakes then migrated further to the northwest between Miyakejima and Kozushima, another volcanic island and developed to the most intense earthquake swarm ever observed in and around Japanese archipelago. To better image how the initial magma intrusion occurred, we relocated hypocenters by using a station-correction method and a double-difference method. The relocated epicenters are generally concentrated near the upper bound of dyke intrusions inferred from geodetic studies throughout the initial stages of the 2000 eruption at Miyakejima from 26 to 27 June 2000. As for seismic activity westward off Miyakejima in the morning on 27 June, hypocenters from both a nationwide seismic network that were relocated by the double-difference method, and those from the volcano seismic network relocated by the station-correction method, formed a very shallow cluster that ascended slowly with time as it propagated northwestward from Miyakejima. This suggests that the dykes have both a radial and upward component of movement.Editorial responsibility: S. Nakada, T. Druitt  相似文献   
92.
This annual review of laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) covers the year 2003. Significant advances were made in understanding laser-sample interactions. In particular, research defined the distribution of particle sizes produced by the interplay of laser wavelength, laser pulse width and the gas environment of ablation. A link between particle sizes and elemental and isotopic fractionation at both the ablation site and in the ICP was established. Experimental 15 7 nm and femtosecond laser systems were tested with promising results. The number of applications of LA-ICP-MS in geology and environmental Earth science continued to grow with particular interest in element concentration and isotope ratio profiling of materials, linking composition to time scales. In situ isotopic ratio measurements were increasingly made using multicollector magnetic sector ICP-MS instruments. Other applications of wide interest included bulk sampling of rocks and ores prepared as lithium borate glasses; low level analysis of platinum-group elements, rhenium and gold in sulfides, metal and silicates; in situ uranium-lead zircon geochronology; and melt and fluid inclusion analysis.  相似文献   
93.
The structural organization of a giant mafic dyke swarm, the Okavango complex, in the northern Karoo Large Igneous Province (LIP) of NE Botswana is detailed. This N110°E-oriented dyke swarm extends for 1500 km with a maximum width of 100 km through Archaean basement terranes and Permo-Jurassic sedimentary sequences. The cornerstone of the study is the quantitative analysis of N>170 (exposed) and N>420 (detected by ground magnetics) dykes evidenced on a ca. 80-km-long section lying in crystalline host-rocks, at high-angle to the densest zone of the swarm (Shashe area). Individual dykes are generally sub-vertical and parallel to the entire swarm. Statistical analysis of width data indicates anomalous dyke frequency (few data <5.0 m) and mean dyke thickness (high value of 17 m) with respect to values classically obtained from other giant swarms. Variations of mean dyke thicknesses from 17 (N110°E swarm) to 27 m (adjoining and coeval N70°E giant swarm) are assigned to the conditions hosting fracture networks dilated as either shear or pure extensional structures, respectively, in response to an inferred NNW–SSE extension. Both fracture patterns are regarded as inherited brittle basement fabrics associated with a previous (Proterozoic) dyking event. The Okavango N110°E dyke swarm is thus a polyphase intrusive system in which total dilation caused by Karoo dykes (estimated frequency of 87%) is 12.2% (6315 m of cumulative dyke width) throughout the 52-km-long projected Shashe section. Assuming that Karoo mafic dyke swarms in NE Botswana follow inherited Proterozoic fractures, as similarly applied for most of the nearly synchronous giant dyke complexes converging towards the Nuanetsi area, leads us to consider that the resulting triple junction-like dyke/fracture pattern is not a definitive proof for a deep mantle plume in the Karoo LIP.  相似文献   
94.
选取合理可信的约束条件对我国经典的63号金刚石钻头胎体配方进行了优化验证,获得理论认识,并依此对已有成熟配方的改进提出了建议。  相似文献   
95.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
96.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   
97.
Particles eroded from hillslopes and exported to rivers are recognized to be composite particles of high internal complexity. Their architecture and composition are known to influence their transport behaviour within the water column relative to discrete particles. To‐date, hillslope erosion studies consider aggregates to be stable once they are detached from the soil matrix. However, lowland rivers and estuaries studies often suggest that particle structure and dynamics are controlled by flocculation within the water column. In order to improve the understanding of particle dynamics along the continuum from hillslopes to the lowland river environment, soil particle behaviour was tested under controlled laboratory conditions. Seven flume erosion and deposition experiments, designed to simulate a natural erosive event, and five shear cell experiments were performed using three contrasting materials: two of them were poorly developed and as such can not be considered as soils, whilst the third one was a calcareous brown soil. These experiments revealed that soil aggregates were prone to disaggregation within the water column and that flocculation may affect their size distribution during transport. Large differences in effective particle size were found between soil types during the rising limb of the bed shear stress sequence. Indeed, at the maximum applied bed shear stress, the aggregated particles median diameter was found to be three times larger for the well‐developed soil than for the two others. Differences were smaller in the falling limb, suggesting that soil aggregates underwent structural changes. However, characterization of particles strength parameters showed that these changes did not fully turn soil aggregates into flocs, but rather into hybrid soil aggregate–floc particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
98.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
99.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
100.
根据重力梯度观测各分量的方差及协方差信息,提出了利用GOCE梯度数据计算径向重力梯度的优化方法。首先给出了径向重力梯度的计算方法,并深入分析了误差传播规律,通过建立相应的条件极值问题,给出了计算径向重力梯度最优组合因子的方法;通过模拟数据验证了本文所提出的优化因子的优越性。实际数据计算表明:相对于传统方法,采用优化组合因子可使反演所得引力位模型的累积大地水准面精度在250阶时提高约2 cm。由于径向重力梯度不仅可以用于地球引力场模型的求解,也可直接应用于地球物理问题的讨论,因此本文所提出的优化方法也可对部分地球动力学问题的讨论提供方便。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号