首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   105篇
  国内免费   191篇
测绘学   120篇
大气科学   338篇
地球物理   69篇
地质学   166篇
海洋学   76篇
天文学   17篇
综合类   56篇
自然地理   99篇
  2024年   6篇
  2023年   16篇
  2022年   21篇
  2021年   42篇
  2020年   44篇
  2019年   40篇
  2018年   40篇
  2017年   29篇
  2016年   29篇
  2015年   37篇
  2014年   43篇
  2013年   56篇
  2012年   41篇
  2011年   55篇
  2010年   44篇
  2009年   43篇
  2008年   33篇
  2007年   43篇
  2006年   34篇
  2005年   25篇
  2004年   30篇
  2003年   12篇
  2002年   18篇
  2001年   22篇
  2000年   18篇
  1999年   14篇
  1998年   12篇
  1997年   7篇
  1996年   14篇
  1995年   14篇
  1994年   10篇
  1993年   12篇
  1992年   14篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有941条查询结果,搜索用时 15 毫秒
131.
Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s~(-1)d~(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach~120 m s~(-1)d~(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s~(-1)d~(-1) are more favorable for a TC's intensification than those with extremely large EFC.  相似文献   
132.
2011年7月26日石家庄市出现一次暴雨冰雹天气,其特点是500 h Pa及以上高空强冷空气导致高空形势在12 h内发生剧变,短波槽快速南下,致使探空观测和数值预报失灵。本文对其他监测资料进行分析,发现这种剧烈变化的天气有明显特征:卫星云图上河套北部逗点云系尾长而粗壮,有向南发展趋势,云系后部的暗区表明干冷空气侵入,与低层暖湿空气形成对流云,尾部断裂表明冷空气加速南下。单站要素变化显示,石家庄地面假相当位温比正常值高了8℃,出现异常不稳定能量。强对流天气发生在假相当位温密集带内,能量中心假相当位温最高达到90℃以上,100 km内假相当位温温差超过25℃,最大降雨出现在假相当位温密集带内。雷达回波呈西南—东北带状排列,前部最大强度为65 d BZ,强回波前形成阵风锋,正负最大速度均超过20 m/s,飑线自西向东移动,它的移向和发展程度决定降雨和冰雹的路径和强度。石家庄市区风向转变和形成地面辐合线分别较降水起始时间提前21 min和30 min。  相似文献   
133.
上海“7·31”局地强对流快速更新同化数值模拟研究   总被引:2,自引:0,他引:2  
王晓峰  王平  张蕾  许晓林  李佳 《高原气象》2015,34(1):124-136
利用雷达、自动气象站、飞机观测(AMDAR)和探空等多种观测资料,采用中尺度数值预报模式WRF和资料同化系统ADAS,对2011年7月31日上海局地强对流过程进行了快速更新同化数值试验。结果表明,数值试验模拟降水的发生时间、落区和随时间演变与实况基本一致,较好再现了海陆热力差异导致上海南北两支海陆风爆发、形成低层辐合线,在热岛效应的叠加下进一步增强,继而引发局地强对流的过程。快速更新同化技术可有效延长此次过程的预警时效,这为城市强对流业务预报提供了新的思路。  相似文献   
134.
王啸华  郑媛媛  徐芬  李杨  侯俊 《气象科学》2015,35(4):497-505
利用高分辨率的加密气象自动站资料、FY2D卫星资料、多普勒雷达资料、常规观测资料以及6 h 1次的NCEP再分析资料等,对2011年6月18日和2011年7月18日江苏地区分别发生在梅雨期开始阶段和结束阶段的两场暴雨进行中尺度天气系统演变和雷达回波参数等特征的对比分析。结果表明:(1)6月18日的天气形势是典型的梅雨期降水形势,在梅雨锋附近产生了区域性暴雨。水汽输送主要是对流层中低层的西南暖湿气流。7月18日的局地暴雨则是出现在低压倒槽顶端右侧的偏东气流中。(2)两次暴雨过程强降水发生前都存在对流层低层辐合快速增强的过程。7月18日暴雨强降水发生前散度值下降则更为迅速。(3)两次暴雨过程中强降水区都出现在地面辐合系统附近的东北气流中,且随着地面辐合系统移动。(4)两次暴雨过程都出现了TBB低于-62℃的强对流云团。(5)6月18日,与多个线性排列的"逆风区"对应的强回波中心形成了"列车效应";7月18日,对流回波带上单体不断流入,在低空急流左前端合并成团状强对流区,分别是形成两次暴雨的重要原因。  相似文献   
135.
关于-遗传算法收敛性的注记   总被引:3,自引:0,他引:3  
遗传算法是一种受到广泛注意的全局优化算法,已经在包括地震工程的很多领域中获得应用.本文将结合这一算法的实际操作步骤,对简单遗传算法的不收敛性和包含最优个体保护策略的遗传算法的收敛性给出一个简要的证明.  相似文献   
136.
Four runs of experimental landform development, with the same uplift rate, different rainfall intensity, and the same material of different permeability adjusted by the degree of compaction, showed complicated effects of rainfall and mound-forming material. In the run with more rainfall on less permeable material, low separated ridges developed in the uplifted area, because abundant overland flow promoted valley erosion and slope processes from early stages. In the run with less rainfall on less permeable material, valley incision proceeded mostly in major valleys where surface water converges. Canyons developed during early stages and later a high massive mountain emerged. The effect of rainfall difference, however, appeared completely opposite on more permeable material accompanied by lower shear strength. In the run with more rainfall on more permeable material, a massive mountain similar to that with less rainfall on less permeable material appeared, and low separated ridges appeared in the run with less rainfall on more permeable material as in the run with more rainfall on less permeable material. In the former case, similar amount of water available for Hortonian overland flow in early stages estimated from rainfall rate and permeability can explain the development of similar landforms. In the latter case, while abundant surface water with more rainfall on less permeable material made fluvial erosion active from early stages, the deficiency in surface water with less rainfall on more permeable material apparently attenuated fluvial erosion but possibly accentuated slope processes and slope failures by seepage water flow through more permeable material of low shear strength. The active erosion from early stages apparently resulted in the development of enduring similar low landforms later in the dynamic equilibrium stage. These experimental results indicate that similar landforms can emerge from different environmental and lithologic controls, and that process does not necessarily follow from form.  相似文献   
137.
利用为期一年的卫星遥感温度(SABER/TIMED)资料重建了120°E子午圈内中间层和低热层大气潮汐各主要频率分量(周日、半日和8小时潮汐).这些主要频率分量随高度振幅增大,在97 km高度达到显著的振幅;其中迁移性周日潮汐在97 km高度出现极大振幅,然后随高度衰减.本文从考察迁移性成分和非迁移性成分各自在总潮汐中贡献角度出发,着重讨论了那些对形成该子午圈中97 km高度上整体潮汐扰动起控制作用的潮汐成分.结果显示,对周日和半日频率这两种潮汐而言,迁移性成分控制了它们的总体时空分布.在春分季节,迁移性周日潮的控制作用最显著,决定了赤道和两半球热带的活动中心;其中北半球副热带地区的季节变化形势与以往利用武汉(30°N,114°E)流星雷达风测量资料开展分析得到的结果是一致的;其他季节受非迁移性成分明显影响,例如,在本文关注的2005年中,夏至季节受(1,0)模、(1,-3)模和(1,-2)模的共同影响形成了从赤道向南延伸的活动中心,极值中心位于赤道附近,振幅达到了20 K以上,是全年的最大值.受迁移性成分控制,半日潮活动主要出现在两半球热带地区,北半球活动中心位于秋分季节(振幅达到13 K),南半球活动中心位于春分和夏至之间.其他季节受非迁移成分的影响,形成若干分布在两半球的活动中心.在本文关注的40°S~40°N范围内,与周日潮和半日潮相比,8小时潮汐具有显著较低的振幅;另外,虽然迁移性成分在一年中的大部分时间系统地分布在两半球热带地区,但是非迁移成分具有与迁移性成分相当或更大的振幅,在整体上控制了这种潮汐的时空分布.  相似文献   
138.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
139.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
140.
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In Pasternack et al. ( 2018 ), a new, scale‐independent, hierarchical river classification was developed that uses five landform types to map the domains of a single fluvial process – flow convergence routing – at each of three–five spatial scales. Given those methods, this study investigated the details of how flow convergence routing organizes nested landform sequences. The method involved analyzing landform abundance, sequencing, and hierarchical nesting along the 35 km gravel/cobble lower Yuba River in California. Independent testing of flow convergence routing found that hydraulic patterns at every flow matched the essential predictions from classification, substantiating the process–morphology link. River width and bed elevation sequences exhibit large, nonrandom, and linked oscillations structured to preferentially yield wide bars and constricted pools at base flow and bankfull flow. At a flow of 8.44 times bankfull, there is still an abundance of wide bar and constricted pool landforms, but larger topographic drivers also yield an abundance of nozzle and oversized landforms. The nested structure of flow convergence routing landforms reveals that base flow and bankfull landforms are nested together within specific floodprone valley landform types, and these landform types control channel morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in‐channel, bankfull, and/or small flood flows. Such flows may initiate sediment transport, but they are too small to control landform organization in a gravel/cobble river with topographic complexity. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号