首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4484篇
  免费   648篇
  国内免费   436篇
测绘学   101篇
大气科学   137篇
地球物理   1174篇
地质学   1613篇
海洋学   413篇
天文学   1487篇
综合类   179篇
自然地理   464篇
  2024年   21篇
  2023年   61篇
  2022年   72篇
  2021年   112篇
  2020年   108篇
  2019年   128篇
  2018年   113篇
  2017年   121篇
  2016年   147篇
  2015年   137篇
  2014年   228篇
  2013年   264篇
  2012年   207篇
  2011年   200篇
  2010年   187篇
  2009年   323篇
  2008年   294篇
  2007年   380篇
  2006年   277篇
  2005年   251篇
  2004年   209篇
  2003年   206篇
  2002年   173篇
  2001年   157篇
  2000年   178篇
  1999年   164篇
  1998年   167篇
  1997年   100篇
  1996年   108篇
  1995年   71篇
  1994年   76篇
  1993年   54篇
  1992年   56篇
  1991年   28篇
  1990年   54篇
  1989年   34篇
  1988年   38篇
  1987年   23篇
  1986年   12篇
  1985年   8篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1978年   4篇
  1954年   3篇
排序方式: 共有5568条查询结果,搜索用时 0 毫秒
101.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   
102.
The heating of the solar corona has been a fundamental astrophysical issue for over sixty years. Over the last decade in particular, space-based solar observatories (Yohkoh, SOHO and TRACE) have revealed the complex and often subtle magnetic-field and plasma interactions throughout the solar atmosphere in unprecedented detail. It is now established that any energy release mechanism is magnetic in origin - the challenge posed is to determine what specific heat input is dominating in a given coronal feature throughout the solar cycle. This review outlines a range of possible magnetohydrodynamic (MHD) coronal heating theories, including MHD wave dissipation and MHD reconnection as well as the accumulating observational evidence for quasi-periodic oscillations and small-scale energy bursts occurring in the corona. Also, we describe current attempts to interpret plasma temperature, density and velocity diagnostics in the light of specific localised energy release. The progress in these investigations expected from future solar missions (Solar-B, STEREO, SDO and Solar Orbiter) is also assessed.Received: 6 February 2003, Published online: 14 November 2003 Correspondence to: R. W. Walsh  相似文献   
103.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   
104.
Analysis of SOHO longitudinal magnetograms and Dopplergrams has revealed the appearance of a region of enhanced upflow of matter in the photosphere when the top of a loop-shaped magnetic flux tube forming a large active region passed through it. The maximum upflow velocity reached 2 km s?1, the maximum size exceeded 20 000 km, and the lifetime was about 2 h.  相似文献   
105.
106.
The origin, evolution and role of magnetic fields in the production and shaping of proto-planetary nebulae (PPNe) and planetary nebulae (PNe) are a subject of active research. Most PNe and PPNe are axisymmetric with many exhibiting highly collimated outflows; however, it is important to understand whether such structures can be generated by isolated stars or require the presence of a binary companion. Towards this end, we study a dynamical, large-scale α−Ω interface dynamo operating in a 3.0 M Asymptotic Giant Branch (AGB) star in both an isolated setting and a setting in which a low-mass companion is embedded inside the envelope. The back reaction of the fields on the shear is included and differential rotation and rotation deplete via turbulent dissipation and Poynting flux. For the isolated star, the shear must be resupplied in order to sufficiently sustain the dynamo. Furthermore, we investigate the energy requirements that convection must satisfy to accomplish this by analogy to the Sun. For the common envelope case, a robust dynamo results, unbinding the envelope under a range of conditions. Two qualitatively different types of explosion may arise: (i) magnetically induced, possibly resulting in collimated bipolar outflows and (ii) thermally induced from turbulent dissipation, possibly resulting in quasi-spherical outflows. A range of models is presented for a variety of companion masses.  相似文献   
107.
108.
We present magnetic field data collected over the Mid-Atlantic Ridge in the vicinity of the Atlantis Fracture Zone and extending out to 10 Ma-old lithosphere. We calculated a magnetization distribution which accounts for the observed magnetic field by performing a three-dimensional inversion in the presence of bathymetry. Our results show the well-developed pattern of magnetic reversals over our study area. We observe a sharp decay in magnetization from the axis out to older lithosphere and we attribute this decay to progressive low temperature oxidation of basalt. In crust which is 10 Ma, we observe an abrupt increase in magnetic field intensity which could be due to an increase in the intensity of magnetization or thickness of the magnetic source layer. We demonstrate that because the reversal epoch was of unusually long duration, a two-layer model comprised of a shallow extrusive layer and a deeper intrusive layer with sloping polarity boundaries can account for the increase in the amplitude of anomaly 5. South of the Atlantis Fracture Zone, high magnetization is correlated with bathymethic troughts at segment end points and lower magnetization is associated with bathymetric highs at segment midpoints. This pattern can be explained by a relative thinning of the magnetic source layer toward the midpoint of the segment. Thickening of the source layer at segment endpoints due to alteration of lower oceanic crust could also cause this pattern. Because we do not observe this pattern north of the fracture zone, we suggest it is a result of the nature of crustal formation process where mantle upwelling is focused. South of the fracture zone, reversals along discontinuity traces only continue to crust 2 Ma old. In crust >2 Ma, we observe bands of high, positive magnetization along discontinuity traces. We suggest that within the discontinuity traces, a high, induced component of magnetization is produced by serpentinized lower crust/upper mantle and this masks the contribution of basalts to the magnetic anomaly signal.  相似文献   
109.
We present an atlas of the Zeeman spectral line polarisation throughout the visible spectrum of the cool F0p star β CrB based on MuSiCoS spectropolarimetry. Stokes I, V, Q and U spectra covering the full 4500–6600 Å MuSiCoS intermediate bandpass are shown at sufficient display resolution so as to be suitable for the identification of individual spectral features. This is foreseen as being useful, for example, in the planning of very high resolution spectropolarimetric studies of Ap star Zeeman signatures using high-dispersion instruments likely to have significantly smaller spectral bandwidth.  相似文献   
110.
A statistical analysis of the Faraday-rotation fluctuations (FRFs) of linearly polarized radio signals from the Helios 1 and Helios 2 spacecraft shows that the FRF time power spectra can be of three types. Spectra of the first type are well fitted by a single power law in the range of fluctuation frequencies 1–10 mHz. Spectra of the second type are a superposition of a power law and two quasi-harmonic components with fluctuation frequencies of about v1=4 mHz (fundamental frequency) and v2=8 mHz (second harmonic). Spectra of the third type exhibit only one of the two quasi-harmonic components against the background of a power law. The spectral density of the quasi-harmonic components can be represented by a resonance curve with a fairly broad [Δυ ≈ (0.5–1.3)υ1,2] distribution relative to the v=v1, 2 peak. The intensity of the quasi-harmonic FRF has a radial dependence that roughly matches the radial dependence for the background FRF, while their period at the fundamental frequency is approximately equal to the period of the wellknown 5-min oscillations observed in the lower solar atmosphere. The fluctuations with 5-min periods in FRF records can be explained by the presence in the outer corona of isolated trains of Alfvén waves generated at the base of the chromosphere-corona transition layer and by acoustic waves coming from deeper layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号