首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2287篇
  免费   196篇
  国内免费   285篇
测绘学   222篇
大气科学   247篇
地球物理   250篇
地质学   602篇
海洋学   602篇
天文学   17篇
综合类   162篇
自然地理   666篇
  2024年   15篇
  2023年   24篇
  2022年   83篇
  2021年   93篇
  2020年   98篇
  2019年   97篇
  2018年   59篇
  2017年   93篇
  2016年   91篇
  2015年   85篇
  2014年   114篇
  2013年   130篇
  2012年   112篇
  2011年   113篇
  2010年   94篇
  2009年   120篇
  2008年   142篇
  2007年   122篇
  2006年   145篇
  2005年   112篇
  2004年   93篇
  2003年   69篇
  2002年   98篇
  2001年   85篇
  2000年   76篇
  1999年   61篇
  1998年   57篇
  1997年   44篇
  1996年   41篇
  1995年   28篇
  1994年   29篇
  1993年   28篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   13篇
  1988年   6篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   10篇
  1983年   10篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1978年   1篇
排序方式: 共有2768条查询结果,搜索用时 0 毫秒
21.
Biokarst on Limestone Coasts, Morphogenesis and Sediment Production   总被引:3,自引:0,他引:3  
Abstract. Biokarst-forms on limestone coasts are developed and arranged according to the bionomic zonation. The development of biokarst is the result of bioerosion, a synergistic effect of biological corrosion by endoliths and biological abrasion by grazers.
The cumulative effect of biogenic carbonate destruction leads to coastal destruction with a resulting highly profiled morphology on the limestone surfaces along the coastal profile. Under the influence of environmental factors a zonation of organisms develops which brings in turn a zonation of erosion rates (0.1-1.1 mm a-1) resulting in biokarst-forms such as rock holes, rock pools and notches.
Products of bioerosion on limestone coasts are dissolved carbonate (by biological corrosion, 10–30% of the decomposed limestone) and particulate carbonate (by biological abrasion, 70–90% of the decomposed limestone) both of which contribute directly or indirectly to nearshore sedimentation. Size and shape of the bioerosional grains are determined by the boring pattern of the endoliths. The fine-grained sediments (maximum within the fraction 20–63 μm) contribute 3–25 % to the nearshore sediments.
Drastic changes in the biological zonation (like the mass invasion of the sea urchin Paracentrotus lividus in the Northern Adriatic since 1972 which eliminated nearly the entire macrophyte zone) due to unknown factors or pollution can have a profound effect on the bioerosion rates, altering them by as much as a factor of ten.  相似文献   
22.
Recently, bromodeoxyuridine (BrdU) has been successfully applied to the measurement of bacterial productivity as an alternative to tritiated thymidine (3H-TdR), which is widely used but often restricted by regulations, particularly in field settings. Here, I report improvements to existing BrdU methods to simplify procedures and increase sensitivity. The feasibility of the method was tested measuring bacterial production in low-productive waters. The method provided radioisotope-free measurements of bacterial production rates at shorter (∼1 h) on-board processing time of samples than previously reported procedures. It was applicable to the detection of rates ranging from 0.021 to 2.7 pmol BrdU l−1h−1. BrdU incorporation rates measured by immunoassay showed a statistically significant correlation with 3H-TdR incorporation rates measured by radioassay (r = 0.74, n = 24, p < 0.001). The linear regression obtained (BrdU = 0.80[3H-TdR] − 0.016) showed a similar relationship to previously reported regressions (BrdU = 0.65[3H-TdR] + 0.12, [3H-BrdU] = 0.69[3H-TdR] − 0.81). There were no statistically significant differences among these regression lines. These results suggest that the method described here provides a non-radioisotopic productivity measurement of bacteria in oceanic epipelagic waters, while retaining continuity of the data with other existing 3H-TdR and BrdU methods.  相似文献   
23.
如何加速成图周期,快速、高效地生产各种地理信息产品是摄影测量应用研究的主要内容.本文介绍了非量测数码航摄影像在全数字摄影测量工作站上进行地理信息产品生产的技术方法和工作流程,研究了关键技术环节.  相似文献   
24.
浅谈建筑设计企业的数据中心建设   总被引:1,自引:0,他引:1  
信息系统数据和计算能力逐步集中的发展趋势以及信息系统逐步成为企业核心业务的支撑,使得企业数据中心的作用越来越重要。如何搞好数据中心建设,保障数据系统的安全、稳定运行,成为信息主管首先要考虑的问题。首先讨论数据中心的作用和数据中心与信息系统之间的关系,然后介绍一个目前在国际上处于领先水平、防护等级最高的数据中心的实例,最后论述数据中心的实施对策。  相似文献   
25.
Rare earth elements (REE) have been mined in North America since 1885, when placer monazite was produced in the southeast USA. Since the 1960s, however, most North American REE have come from a carbonatite deposit at Mountain Pass, California, and most of the world’s REE came from this source between 1965 and 1995. After 1998, Mountain Pass REE sales declined substantially due to competition from China and to environmental constraints. REE are presently not mined at Mountain Pass, and shipments were made from stockpiles in recent years. Chevron Mining, however, restarted extraction of selected REE at Mountain Pass in 2007. In 1987, Mountain Pass reserves were calculated at 29 Mt of ore with 8.9% rare earth oxide based on a 5% cut‐off grade. Current reserves are in excess of 20 Mt at similar grade. The ore mineral is bastnasite, and the ore has high light REE/heavy REE (LREE/HREE). The carbonatite is a moderately dipping, tabular 1.4‐Ga intrusive body associated with ultrapotassic alkaline plutons of similar age. The chemistry and ultrapotassic alkaline association of the Mountain Pass deposit suggest a different source than that of most other carbonatites. Elsewhere in the western USA, carbonatites have been proposed as possible REE sources. Large but low‐grade LREE resources are in carbonatite in Colorado and Wyoming. Carbonatite complexes in Canada contain only minor REE resources. Other types of hard‐rock REE deposits in the USA include small iron‐REE deposits in Missouri and New York, and vein deposits in Idaho. Phosphorite and fluorite deposits in the USA also contain minor REE resources. The most recently discovered REE deposit in North America is the Hoidas Lake vein deposit, Saskatchewan, a small but incompletely evaluated resource. Neogene North American placer monazite resources, both marine and continental, are small or in environmentally sensitive areas, and thus unlikely to be mined. Paleoplacer deposits also contain minor resources. Possible future uranium mining of Precambrian conglomerates in the Elliott Lake–Blind River district, Canada, could yield by‐product HREE and Y. REE deposits occur in peralkaline syenitic and granitic rocks in several places in North America. These deposits are typically enriched in HREE, Y, and Zr. Some also have associated Be, Nb, and Ta. The largest such deposits are at Thor Lake and Strange Lake in Canada. A eudialyte syenite deposit at Pajarito Mountain in New Mexico is also probably large, but of lower grade. Similar deposits occur at Kipawa Lake and Lackner Lake in Canada. Future uses of some REE commodities are expected to increase, and growth is likely for REE in new technologies. World reserves, however, are probably sufficient to meet international demand for most REE commodities well into the 21st century. Recent experience shows that Chinese producers are capable of large amounts of REE production, keeping prices low. Most refined REE prices are now at approximately 50% of the 1980s price levels, but there has been recent upward price movement for some REE compounds following Chinese restriction of exports. Because of its grade, size, and relatively simple metallurgy, the Mountain Pass deposit remains North America’s best source of LREE. The future of REE production at Mountain Pass is mostly dependent on REE price levels and on domestic REE marketing potential. The development of new REE deposits in North America is unlikely in the near future. Undeveloped deposits with the most potential are probably large, low‐grade deposits in peralkaline igneous rocks. Competition with established Chinese HREE and Y sources and a developing Australian deposit will be a factor.  相似文献   
26.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   
27.
The latitudinal variation of the photolysis frequency of ozone to O(1D) atoms, J(O1D), was measured using a filter radiometer during the cruise ANT VII/1 of the research vessel Polarstern in September/October 1988. The J(O1D) noon values exhibited a maximum of 3.6×10-5 s-1 (2 sr) at the equator and decreased strongly towards higher latitudes. J(O1D) reached highest values for clean marine background air with low aerosol load and almost cloudless sky. The J(O1D) data, measured under these conditions and a temperature of 295 K, can be expressed by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaacI% cacaqGpbWaaWbaaSqabeaaiiaacqWF8baFaaGccaqGebGaaeykaiaa% bccacqWF9aqpcaqGGaGaaeyzaiaabIhacaqGWbGaaeiiaiaabUhacq% GHsislcaaI4aGaaiOlaiaaicdacaaIYaGaeyOeI0IaaGioaiaac6ca% caaI4aGaaiiEaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZa% aaaOGaaeiiaiaabIhacaqGGaGaam4uaiabgUcaRiaaiodacaGGUaGa% aGinaiaacIhacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOnaa% aakiaadofadaahaaWcbeqaaiaaikdaaaGccaGG9bGaaeikaiaaboha% daahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaaaa!5EE9!\[J({\text{O}}^| {\text{D) }} = {\text{ exp \{ }} - 8.02 - 8.8x10^{ - 3} {\text{ x }}S + 3.4x10^{ - 6} S^2 \} {\text{(s}}^{ - 1} )\] where S represents the product of the overhead ozone column (DU) and the secant of the solar zenith angle. The meridional profile of the primary OH radical production rate P(OH) was calculated from the J(O1D) measurements and simultaneously recorded O3 and H2O mixing ratios. While the latitudinal distribution of J(O1D) and water vapour was nearly symmetric to the equator, high tropospheric ozone levels up to 40 ppb were observed in the Southern Hemisphere, SH, resulting in higher P(OH) in the SH.  相似文献   
28.
基于对国内地质工程机械的研发现状的考虑,根据虚拟样机技术的特点,讨论了在地质工程机械领域实施虚拟样机技术的必要件,并提出了建立地质工程机械虚拟样机的策略。联合PRO/E、ANSYS及ADAMS建立了气动潜孔锤的虚拟样机模型,对气动潜孔锤虚拟样机进行了仿真,阐明了虚拟样机技术在地质工程机械领域的应用前景。  相似文献   
29.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   
30.
近年来,随着核探测与分析技术的日趋成熟,使复杂γ谱的获取、解析达到了在线测量的要求,从而使在线PGNAA(中子活化瞬发γ射线分析)技术获得了飞速的发展。它可对一些工业生产过程中的全物料进行在线测量,其分析精度、可靠性等皆能满足在线元素含量分析的需要,因而显示出巨大的发展潜力和广阔的市场前景。这里介绍了基于PGNAA技术的在线分析系统的基本原理、组成和发展,并概述了它在水泥、煤炭等行业的应用情况。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号