首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2765篇
  免费   507篇
  国内免费   766篇
测绘学   115篇
大气科学   332篇
地球物理   1119篇
地质学   1445篇
海洋学   397篇
天文学   33篇
综合类   151篇
自然地理   446篇
  2024年   9篇
  2023年   31篇
  2022年   63篇
  2021年   110篇
  2020年   129篇
  2019年   135篇
  2018年   134篇
  2017年   136篇
  2016年   140篇
  2015年   185篇
  2014年   167篇
  2013年   264篇
  2012年   193篇
  2011年   190篇
  2010年   170篇
  2009年   166篇
  2008年   195篇
  2007年   201篇
  2006年   208篇
  2005年   163篇
  2004年   141篇
  2003年   118篇
  2002年   82篇
  2001年   98篇
  2000年   70篇
  1999年   97篇
  1998年   65篇
  1997年   62篇
  1996年   63篇
  1995年   39篇
  1994年   53篇
  1993年   29篇
  1992年   27篇
  1991年   30篇
  1990年   13篇
  1989年   9篇
  1988年   17篇
  1987年   5篇
  1986年   3篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有4038条查询结果,搜索用时 593 毫秒
541.
介绍了高速铁路防风明洞的基本作用及设计方法;利用计算流体动力学原理中的数学模型及控制方程,对兰新第二双线铁路防风明洞大风作用下的风荷载进行了分析;通过计算工况的假定以及边界条件的合理设定,采用有限体积法建立防风明洞数值分析模型,并模拟计算了平地路段、浅路堑地段和路堤地段三大类工况和70、60、50、40m/s4种风速情况。研究结果表明:①开孔情况下,明洞各部位所受风荷载随着风速增大而增大;②明洞迎风侧均为正压,平地地段与路堤地段所受正压较接近,最大值出现在风速为70m/s时,迎风边墙正压为3202Pa;③明洞拱顶及背风侧均为负压,浅路堑地段所受负压最大值出现在风速为70m/s时,拱顶负压为-3550Pa;④各地段背风侧所受负压均小于-1500Pa,背风墙脚与背风边墙受力基本相同;⑤各地段各风速情况下,拱顶处负压均为最大;⑥开孔情况下的明洞各部位风荷载,普遍小于不开孔情况;⑦明洞开孔附近有回流风速,并随着外界风速增大而增大。  相似文献   
542.
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 1 and RG 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.  相似文献   
543.
Based on eddy covariance measurements over two kinds of land surfaces(a degraded grassland and a maize cropland)in a semiarid area of China in 2005 and 2008,the effects of different gap filling methods,energy balance closure and friction velocity threshold(u*)on annual net ecosystem exchange(NEE)were analyzed.Six gap filling methods,including mean diurnal variation(MDV),marginal distribution sampling(MDS),and nonlinear regressions method,were investigated by generating secondary datasets with four different artificial gap lengths(ranging in length from single half-hours to 12 consecutive days).The MDS generally showed a good overall performance especially for long gaps,with an annual sum bias error less than 5 g C m-2 yr-1.There was a large positive annual sum bias error for nonlinear regressions,indicating an overestimate on net ecosystem respiration.The offset in the annual sum NEE for four nonlinear regressions was from 8.0 to 30.8 g C m-2 yr-1.As soil water content was a limiting factor in the semiarid area,the nonlinear regressions considering both soil temperature and soil water content as controlling variables had a better performance than others.The performance of MDV was better in daytime than in nighttime,with an annual sum bias error falling between-2.6 and-13.4 g C m-2 yr-1.Overall,the accuracy of the gap filling method was dependent on the type of the land surface,gap length,and the time of day when the data gap occurred.The energy balance ratio for the two ecosystems was nearly 80%.Turbulent intensity had a large impact on energy balance ratio.Low energy balance ratio was observed under low friction velocity during the night.When there was a large fetch distance in a wind direction,a low energy balance ratio was caused by mismatch of the footprints between the available energy and turbulent fluxes.The effect of energy balance correction on CO2 flux was evaluated by assuming the imbalance caused by the underestimation of sensible heat flux and latent heat flux.The results showed an average increase of 10 g C m-2 yr-1 for annual NEE in both ecosystems with an energy balance correction.On the other hand,the u*threshold also have a large impact on annual sum NEE.Net carbon emission increased 37.5 g C m-2 yr-1 as u*threshold increased from 0.1 to 0.2 m s-1,indicating a large impact of imposing u*threshold on net ecosystem carbon exchange.  相似文献   
544.
青藏公路长期研究表明,青藏高原多年冻土公路工程空间效应敏感,主要表现为公路空间效应直接改变下伏冻土地基的天然能量平衡状态,继而引发一系列工程病害. 针对这一工程问题,提出多年冻土地区公路能量平衡设计理论,研究公路工程建设引发的多年冻土地基能量变化状态,平衡自然环境变化和工程建设等导致的外界“有害”能量导入与工程处置措施对冻土地基中“有害”能量导出之间相互关系,从空间和时间两个维度分析多年冻土地区公路工程的能量平衡过程. 据此,作为多年冻土公路工程的设计依据,将为青藏高原高速公路的科学设计提供理论支持.  相似文献   
545.
孔祥兵  赵淑萍  穆彦虎  罗飞 《冰川冻土》2014,36(5):1205-1212
冻土路基土体的物理性质与温度有密切关系, 在不同的季节, 路基内的变形场和应力场会相应发生变化. 为了说明路基内变形场和应力场的季节性差异, 以青藏铁路某断面为例, 对冻土路基在有、无列车荷载两种工况下进行了数值模拟, 系统分析了两种工况下路基内的变形场和应力场特点. 结果表明: 路基修筑后, 在自重作用下会产生较大瞬时变形; 由于路基内温度场随时间变化, 路基内各点的位移也随时间发生变化, 且位移时程曲线与温度时程曲线大体呈负相关. 在有、无列车两种工况下路基竖向位移分布都是由道砟中心向路基内部逐渐减小, 但数值明显不同; 由列车荷载引起的最大竖向附加变形发生在路基顶面中心点, 在10月15日、1月15日、4月15日, 变形量分别为-4.94 mm、-3.24 mm、-2.56 mm. 对于路基底面中心点和地基浅层中心点, 由列车荷载引起的附加应力在10月15日最大、1月15日次之、4月15日最小, 附加应力最大达到19.48 kPa; 列车荷载主要影响路基上部土体应力分布, 对下部土体应力分布影响较小.  相似文献   
546.
利用天山乌鲁木齐河源1号冰川1980-2010年的物质平衡、水文气象实测资料, 分析了1号冰川1980-2010年的各高度带物质平衡特征, 进而分析了1984-2010年纯积累和纯消融的变化特点及其与气象要素、冰川融水径流变化的关系. 结果表明: 1号冰川物质平衡处于持续的负平衡, 纯积累量与年降水的相关系数为-0.16, 纯消融量与年均温的相关系数为0.61, 与夏季(6-8月)气温的相关系数为0.78. 2010年1号冰川为有观测记录以来的最强消融年(bn=-1 327 mm), 整个冰川处于消融区(平衡线高度大于海拔4 484 m, 积累区面积为0), 同时东、西支冰川各高度区间的物质平衡变化也与往年度显著不同, 说明2010年是1号冰川物质平衡变化的特殊年份, 也有可能1号冰川的物质平衡变化进入了一个新的亏损变化阶段. 对其径流数据的分析还表明, 温度对径流的影响大于降水对径流的影响.  相似文献   
547.
建立了包括地层模型、桩基荷载模型、浅埋隧道开挖模型和支护模型以及桩基荷载、地层压力、地层沉降、支护应变量测装置的平面应变模型试验系统;通过模型试验,研究了不同水平、竖向相对位置处的既有桩基荷载对附近浅埋隧道开挖引起的地层压力重分布、地层沉降及隧道支护内力的影响特征。另外,采用FLAC3D软件,对模型试验及不同工况进行了数值模拟。结果表明:(1)与没有桩基荷载的自由地层中的隧道开挖试验相比较,地层中的既有桩基荷载会明显地改变邻近浅埋隧道开挖引起的地层压力重分布、地层沉降及隧道支护内力;(2)对于桩径和水平相对距离都相同,但桩长不同的桩基荷载,桩长与隧道埋深比值为1.0时,对隧道开挖效应影响最大,二者比值小于1.0时,其影响程度随着比值的减小而减小,二者比值大于1.0时,桩长的改变对隧道开挖效应影响较小;(3)对于桩径和桩长都相同的桩基荷载,对地层压力、地层沉降及支护内力的影响随桩基荷载与隧道的水平距离的减小而增大,桩基荷载距隧道的水平距离与隧道直径比值介于0.5~4.0时,桩基荷载对隧道开挖效应影响较大,隧道较危险,比值介于4.0~6.0时,影响较小,比值>6.0时,影响可以忽略不计。  相似文献   
548.
张治国  张孟喜  王卫东 《岩土力学》2014,35(Z2):121-128
基于层状体系解析刚度矩阵理论解,结合5节点Gauss-Legendre求积公式,提出了层状地基中顶管施工正面附加推力、掘进机与土体之间摩擦力以及共同作用力引起的附加荷载计算方法,分析了顶管推进引起的土体竖向附加荷载分布规律,也研究了地基等效均质性、土层力学参数、计算点间距以及顶管埋深等因素对顶管施工诱发附加荷载的影响效应。研究结果表明,掘进摩擦力引起的附加荷载在掘进面前方迅速达到压应力峰值,其量值大小和影响范围均要大于正面附加推力,是顶管施工引起临近地层附加荷载的主要影响因素。此外,层状地基土体参数的改变会对顶管施工扰动地层的附加荷载产生一定影响,地基等效均质性、计算点间距以及顶管埋深等因素对附加荷载大小及分布均存在显著影响。成果可为合理制定顶管开挖对周围土工环境的保护措施提供一定理论依据,也可为其他盾构隧道工程提供一定的理论参考。  相似文献   
549.
藏北羌塘高原双湖地表热源强度及地表水热平衡   总被引:2,自引:0,他引:2  
青藏高原加热及地—气间物质能量交换对我国、东亚乃至全球的天气和气候系统都有着非常重要的作用,受客观条件限制,藏北羌塘高原腹地尚无系统的地—气相互作用过程观测。本文利用中国科学院羌塘双湖极端环境综合观测研究站2011年10月-2012年9月一年的自动气象站观测数据,分析了年内季节和日尺度下双湖地区地面加热场特征,探讨了地表能量平衡及水量平衡特征,结果表明:(1) 双湖地区年内地表热源强度基本为正,年平均热源强度为79.5 W/m2;然而地表热源强度呈现明显的季节和日变化规律,夏季热源强度大于冬季,白天热源强度大于夜间。夏季地表白天为强热源,夜间为弱热源,冬季地表白天为强热源,夜间为冷源。(2) 双湖地区地表能量分配季节变化明显,7、8月份地—气间主要以潜热交换为主,其他月份主要以感热方式进行热量交换,年平均上主要以感热交换为主,年均感热通量和潜热通量分别为55.4 W/m2和24.1 W/m2,波文比为2.3。(3) 双湖地区降水和蒸发皆主要集中在6-9月,年降雨量为332 mm,年蒸发量为312.9 mm,年水量差为19.1 mm,地表水量存在不平衡现象。(4) 双湖地区地表蒸发力很强,年潜在蒸发为1888.2 mm,年均湿润指数为0.17,属典型半干旱气候特征。  相似文献   
550.
针对地下水埋深较浅地区,由高层建筑荷载引起的土体变形问题,以比奥固结理论为基础,结合土体非线性流变理论,将土体本构关系推广到黏弹塑性;同时考虑土体力学参数及水力参数的动态变化关系,建立了高层建筑荷载引发地面沉降与隆起变形的三维有限元数值模型,详细研究了高层建筑荷载影响下的土体变形特征及此过程中土体力学参数及水力学参数的变化特征。结果表明:由高层建筑荷载引起的地面沉降呈现漏斗状,以建筑物中心为漏斗中心,高层建筑荷载施加初期,高层建筑周围出现隆起,到达最大值后隆起逐渐消失;高层建筑底部浅层土体孔隙度、渗透系数及泊松比均呈现缓慢减小趋势,弹性模量呈现缓慢增大趋势;而高层建筑周围浅层土体的孔隙度、渗透系数及泊松比呈现先增大后减小的变化趋势,弹性模量则呈现先减小后增大的变化趋势;高层建筑影响区域浅部土体参数的变化趋势与土体的回弹及压缩有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号