首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3087篇
  免费   498篇
  国内免费   482篇
测绘学   877篇
大气科学   400篇
地球物理   756篇
地质学   758篇
海洋学   409篇
天文学   29篇
综合类   349篇
自然地理   489篇
  2024年   12篇
  2023年   34篇
  2022年   79篇
  2021年   140篇
  2020年   133篇
  2019年   158篇
  2018年   133篇
  2017年   190篇
  2016年   204篇
  2015年   214篇
  2014年   195篇
  2013年   201篇
  2012年   208篇
  2011年   219篇
  2010年   190篇
  2009年   180篇
  2008年   155篇
  2007年   208篇
  2006年   187篇
  2005年   135篇
  2004年   147篇
  2003年   91篇
  2002年   92篇
  2001年   85篇
  2000年   72篇
  1999年   62篇
  1998年   65篇
  1997年   41篇
  1996年   32篇
  1995年   29篇
  1994年   37篇
  1993年   37篇
  1992年   25篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   10篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1954年   4篇
排序方式: 共有4067条查询结果,搜索用时 31 毫秒
31.
Using Topological Relationships to Inform a Data Integration Process   总被引:2,自引:0,他引:2  
When spatial datasets are overlaid, corresponding features do not always coincide. This may be a result of the datasets having differing quality characteristics, being captured at different scales or perhaps being in different projections or datums. Data integration methods have been developed to bring such datasets into alignment. Although these methods attempt to maintain topological relationships within each dataset, spatial relationships between features in different datasets are generally not considered. The preservation of inter‐dataset topology is a research area of considerable current interest. This research addresses the preservation of topology within a data integration process. It describes the functional models established to represent a number of spatial relationships as observation equations. These are used to provide additional information concerning the relative positions of features. Since many topological relationships are best modelled as inequalities, an algorithm is developed to accommodate such relationships. The method, based on least squares with inequalities (LSI), is tested on simulated and real datasets. Results are presented to illustrate the optimal positioning solutions determined using all of the available information. In addition, updated quality parameters are provided at the level of the individual coordinate, enabling communication of local variation in the resultant quality of the integrated datasets.  相似文献   
32.
抗差估计具有较好的抗拒异常观测值及粗差的能力,而最小二乘配置又能较好地处理系统误差,本文结合两者的优点,利用抗差最小二乘配置对数字化地图进行几何纠正,其中对协方差函数采用抗差拟合,得到了较好的结果。实验证明在GIS数据处理的扫描数字化地图几何纠正中,抗差最小二乘配置在抗拒异常值和处理系统误差方面优于单纯的最小二乘估计和单纯的最小二乘配置方法。  相似文献   
33.
34.
Two different goals in fitting straight lines to data are to estimate a true linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating true straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal—predicting the dependent variable—OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples.  相似文献   
35.
A numerical procedure is described for the analysis of the vertical deformation and the stress distribution of the strip footings on layered soil media. Three layers of soil with different stiffness are considered with the middle soil layer the thinnest and most stiff layer. The soil media is discretized and using the theory of elasticity, the governing differential equations are obtained in terms of vertical and horizontal displacements. These equations along with appropriate boundary and continuity conditions are solved by using the finite difference method. The vertical and horizontal displacements, strains and stresses are found at various nodes in the soil media. Parametric studies are carried out to study the effect of the placement depth of the middle soil layer, the relative ratios of the moduli of deformation of the soil layers on the vertical displacement of the footing and the vertical stress distribution. These studies reveal that the middle thin but very stiff layer acts like a plate and redistributes the stresses on the lower soft soil layer uniformly. The displacement on the top and bottom of the middle soil layer is almost the same showing that the compression of the middle layer is negligible as it is very stiff.  相似文献   
36.
37.
38.
39.
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a 'flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.  相似文献   
40.
We have found that the extensively used finite difference scheme time3d produces time fields which are 'asymmetric' in the sense that traveltimes computed to the right of the source are faster than traveltimes computed to the left. All finite difference schemes will, as they are approximations to the wave equation, to some extent fail to obey reciprocity perfectly. We show, however, that the errors in time3d may be significant—and unnecessarily large. An asymmetry in the point source initialization has been identified, and after correction time3d produces time fields with an improved reciprocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号