全文获取类型
收费全文 | 3590篇 |
免费 | 400篇 |
国内免费 | 447篇 |
专业分类
测绘学 | 1658篇 |
大气科学 | 620篇 |
地球物理 | 662篇 |
地质学 | 443篇 |
海洋学 | 309篇 |
天文学 | 105篇 |
综合类 | 501篇 |
自然地理 | 139篇 |
出版年
2024年 | 12篇 |
2023年 | 32篇 |
2022年 | 59篇 |
2021年 | 115篇 |
2020年 | 143篇 |
2019年 | 163篇 |
2018年 | 92篇 |
2017年 | 164篇 |
2016年 | 198篇 |
2015年 | 214篇 |
2014年 | 209篇 |
2013年 | 263篇 |
2012年 | 242篇 |
2011年 | 273篇 |
2010年 | 201篇 |
2009年 | 223篇 |
2008年 | 194篇 |
2007年 | 237篇 |
2006年 | 199篇 |
2005年 | 159篇 |
2004年 | 120篇 |
2003年 | 119篇 |
2002年 | 90篇 |
2001年 | 81篇 |
2000年 | 80篇 |
1999年 | 72篇 |
1998年 | 99篇 |
1997年 | 57篇 |
1996年 | 53篇 |
1995年 | 47篇 |
1994年 | 39篇 |
1993年 | 28篇 |
1992年 | 39篇 |
1991年 | 19篇 |
1990年 | 26篇 |
1989年 | 27篇 |
1988年 | 16篇 |
1987年 | 9篇 |
1986年 | 8篇 |
1985年 | 4篇 |
1984年 | 6篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1954年 | 2篇 |
排序方式: 共有4437条查询结果,搜索用时 15 毫秒
41.
This paper solves numerically the full time-dependent Schrõdinger equation based on the rigid rotor model, and proposes a novel strategy to determine the optimal time delay of the two laser pulses to manipulate the molecular selective alignment. The results illustrate that the molecular alignment generated by the first pulse can be suppressed or enhanced selectively, the relative populations of even and odd rotational states in the final rotational wave packet can be manipulated selectively by precisely inserting the peak of the second laser pulse at the time when the slope for the alignment parameter by the first laser locates a local maximum for the even rotational states and a local minimum for the odds, and vice versa. The selective alignment can be further optimised by selecting the intensity ratio of the two laser pulses on the condition that the total laser intensity and pulse duration are kept constant. 相似文献
42.
George A. Maul 《Marine Geodesy》2013,36(3-4):167-168
The Jason-1 satellite was launched on 7 December 2001 with the primary objective of continuing the high accuracy time series of altimeter measurements that began with the TOPEX/Poseidon mission in 1992. To achieve this goal, it is necessary to validate the performance of the Jason-1 measurement system, and to verify that its error budget is at least at the same level as that of the TOPEX/Poseidon mission. The article reviews the main components of the Jason-1 altimetric error budget from instrument characterization to the geophysical use of the data. Using the Interim Geophysical Data Records (16DR) that were distributed to the Jason-1 Science Working Team during the verification phase of the mission, it is shown that the Jason-1 mission is performing well enough to continue studies of the large-scale features of the ocean, and especially to continue time series of mean sea-level variations with an accuracy comparable to TOPEX/Poseidon. 相似文献
43.
Peitao Wang Zhiyuan Ren Lining Sun Jingming Hou Zongchen Wang Ye Yuan Fujiang Yu 《海洋学报(英文版)》2021,40(11):11-30
The systematic discrepancies in both tsunami arrival time and leading negative phase (LNP) were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel, Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami (DART) sites and 29 coastal tide gauge stations. The results revealed systematic travel time delay of as much as 22 min (approximately 1.7% of the total travel time) relative to the simulated long waves from the 2015 Chilean tsunami. The delay discrepancy was found to increase with travel time. It was difficult to identify the LNP from the near-shore observation system due to the strong background noise, but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean. We determined that the LNP for the Chilean tsunami had an average duration of 33 min, which was close to the dominant period of the tsunami source. Most of the amplitude ratios to the first elevation phase were approximately 40%, with the largest equivalent to the first positive phase amplitude. We performed numerical analyses by applying the corrected long wave model, which accounted for the effects of seawater density stratification due to compressibility, self-attraction and loading (SAL) of the earth, and wave dispersion compared with observed tsunami waveforms. We attempted to accurately calculate the arrival time and LNP, and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event. The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model. Taking all of these effects into consideration, our results demonstrated good agreement between the observed and simulated waveforms. We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP, which is observed for tsunamis that have propagated over long distances frequently. The travel time delay between the observed and corrected simulated waveforms is reduced to <8 min and the amplitude discrepancy between them was also markedly diminished. The incorporated effects amounted to approximately 78% of the travel time delay correction, with seawater density stratification, SAL, and Boussinesq dispersion contributing approximately 39%, 21%, and 18%, respectively. The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event. In contrast, the seawater stratification only reduced the tsunami speed, whereas the earth's elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations. This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival, and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami. These results also support previous theory and can help to explain the observed discrepancies. 相似文献
44.
45.
在对珠江口外2006年冬季航次走航ADCP观测资料处理中发现用Joyce的方法不能有效地订正系统误差,其原因在于订正角与航速、船艏向相关。给出了一个订正角为船艏向余弦的拟合函数,得出良好的订正结果。分析了VmDas软件处理流速结果的精度,给出了系统误差识别的方法。发现观测资料中一些不能为VmDas软件识别的错误数据,分析了海况对观测资料的影响,提出了观测资料质量控制与误差订正的一套程序。 相似文献
46.
Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (DLOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1--9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks. 相似文献
47.
48.
49.
Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems. 相似文献
50.